Principles of Geotechnical Engineering (MindTap Course List)
Principles of Geotechnical Engineering (MindTap Course List)
9th Edition
ISBN: 9781305970939
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
Question
Book Icon
Chapter 14, Problem 14.1P
To determine

Find the passive force Pp per unit length of the wall using Terzaghi and Peck’s wedge theory.

Expert Solution & Answer
Check Mark

Answer to Problem 14.1P

The passive force Pp per unit length of the wall using Terzaghi and Peck’s wedge theory is 2,997kN/m_.

Explanation of Solution

Given information:

The height (H) of the retaining wall is 6.0 m.

The soil friction angle ϕ is 40°.

The unit weight γ of the granular backfill is 18.5kN/m3.

The equation for the angle of wall friction δ is 12ϕ.

Calculation:

Determine the angle of wall friction δ using the relation.

δ=12ϕ

Substitute 40° for ϕ.

δ=12(40°)=20°

Calculate passive force Pp per unit length of the wall using Terzaghi and Peck’s wedge theory using the relation.

Pp=12KpγH2

Here, Kp is the passive earth pressure coefficient.

Refer Figure (14.4) “Variation of Kp with ϕ and δ based on the procedure of Terzaghi and Peck’s” in the text book.

Take the passive earth pressure coefficient for the soil having friction angle of 40° and angle of wall friction of 20° as 9.0.

Substitute 9.0 for Kp, 18.5kN/m3 for γ, and 6.0 m for H.

Pp=12×9.0×18.5×6.02=5,9942=2,997kN/m

Thus, the passive force Pp per unit length of the wall using Terzaghi and Peck’s wedge theory is 2,997kN/m_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. For the foundation shown below: Qapp = 60 kips (Load obtained from structural engineer) 1.5 ft G.W.T. 3 ft Poorly Graded Sand (SP): Ym 115 pcf (above G.W.T.) Ysat 125 pcf (below G.W.T.) c' = 0, ' = 35° K Square footing, 4' x 4' Foundation Dimension Information: 1-ft x 1-ft square concrete column. 1-ft thick "foot" flanges. Yconc=150 pcf *Assume weight of reinforcing steel included in unit weight of concrete. *Assume compacted backfill weighs the same as in-situ soil. Assume this foundation is being designed for a warehouse that had a thorough preliminary soil exploration. Using the general bearing capacity equation: a. Calculate the gross applied bearing pressure, the gross ultimate bearing pressure, and determine if the foundation system is safe using a gross bearing capacity ASD approach. Please include the weight of the foundation, the weight of the backfill soil, and the effect of the uplift pressure caused by the presence of the water table in your bearing capacity…
٢٥ ٠٥:٤٠١٠ 2025 ChatGPT VivaCut Onet Puzzle مسلم X Excel JPG I❤> PDF Copilot Chat Bot PDF2IMG iLovePDF NokoPrint O.O StudyX ☑ W CapCut Candy Crush DeepSeek Word ☐ Saga 啡 AcadAl ل TikTok
Refer to the figure below. Given: L = 7 m, y = 16.7 kN/m², and ø' = 30°. L L3 ση Sand γ $' D T LA L σε σε IN P Sand 1. Calculate the theoretical depth of penetration, D. (Enter your answer to three significant figures.) D= m 2. Calculate the maximum moment. (Enter your answer to three significant figures.) Mmax kN-m/m
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning