
Find the passive force

Answer to Problem 14.1P
The passive force
Explanation of Solution
Given information:
The height (H) of the retaining wall is 6.0 m.
The soil friction angle
The unit weight
The equation for the angle of wall friction
Calculation:
Determine the angle of wall friction
Substitute
Calculate passive force
Here,
Refer Figure (14.4) “Variation of
Take the passive earth pressure coefficient for the soil having friction angle of
Substitute 9.0 for
Thus, the passive force
Want to see more full solutions like this?
Chapter 14 Solutions
Principles of Geotechnical Engineering (MindTap Course List)
- Find the internal torques for segments AB, BC, and CD (in N-m) by drawing the internal torque diagram, the maximum torsional shear on the shaft in MPa, and the relative rotation of section A with respect to section D in degrees.arrow_forwardDetermine the heel and toe stresses and the factor of safeties for sliding and overturning for the gravity dam section shown in the figure below for the following loading conditions: - Horizontal earthquake (Kh) = 0.1 - Normal uplift pressure with gallery drain working Silt deposit up to 30 m height - No wave pressure and no ice pressure Unit weight of concrete = 2.4 Ton/m³ and unit weight of silty water = 1.4 Ton/m³ - Submerged weight of silt = 0.9 Ton/m³ == - Coefficient of friction = 0.65 and angle of repose = 25° Solve this question with the presence of gallery and without gallery., discuss the issue in both cases.... Solve in table 144 m 4m Wi 8m 6m 8m 1.7m 120marrow_forwardThe efficiency for a steel specimen immersed in a phosphating tank is the weight of the phosphate coating divided by the metal loss (both in mg/ft²). An article gave the accompanying data on tank temperature (x) and efficiency ratio (y). Temp. 171 173 174 175 175 176 177 178 Ratio 0.82 1.39 1.48 0.95 1.15 1.06 1.00 1.82 Temp. 181 181 181 181 181 182 182 183 Ratio 1.35 1.52 1.55 2.19 2.17 0.92 1.45 0.82 Temp. 183 183 183 185 185 186 187 189 Ratio 1.85 2.04 2.70 1.59 2.54 3.04 1.89 3.12 (a) Determine the equation of the estimated regression line. (Round all numerical values to four decimal places.) y = (b) Calculate a point estimate for true average efficiency ratio when tank temperature is 183. (Round your answer to four decimal places.) (c) Calculate the values of the residuals from the least squares line for the four observations for which temperature is 183. (Round your answers to two decimal places.) (183, 0.82) (183, 1.85) (183, 2.04) (183, 2.70) Why do they not all have the same…arrow_forward
- Problem: In designing an asphalt concrete mixture for highway pavement, data in the table below showing the aggregate characteristics were used. Percent by weight of Effective specific Aggregate type Bulk specific gravities total paving mixture gravity Coarse aggregates 42 Fine aggregates 51 Mineral fillers 7 2.60 2.71 2.82 2.69 Determine the optimum asphalt content as a percentage of the total mix if results obtained using the Marshall method are shown in the following table. The specific gravity of the asphalt is 1.02. (Use Table 8 for required specifications.) Weight of Specimen (g) Percent Asphalt in Air in Water Stability (lb) Flow (0.01 in.) 5.5 1325.3 785.6 1796 13 6.0 1330.1 793.3 1836 14 6.5 1336.2 800.8 1861 16 7.0 1342.0 804.5 1818 20 7.5 1347.5 805.1 1701 25arrow_forward12.36 Figure P12.36 shows a 3 × 5 pile group consisting of 15 concrete piles of 400 mm diameter and 12 m in length. What would be the maximum load that can be allowed on the mat with a factor of safety of 3? The piles have a center- to-center spacing of 1200 mm. Qall = ? Clay Cu= 60 kN/m² Clay Cu= 90 kN/m² 5 m 7 marrow_forward2.64 A 2.75-kN tensile load is applied to a test coupon made from 1.6-mm flat steel plate (E = 200 GPa, v = 0.30). Determine the resulting change in (a) the 50-mm gage length, (b) the width of portion AB of the test coupon, (c) the thickness of portion AB, (d) the cross-sectional area of portion AB. 2.75 kN A 12 mm 50 mm B 2.75 kNarrow_forward
- Determine the heel and toe stresses and the factor of safeties for sliding and overturning for the gravity dam section shown in the figure below for the following loading conditions: - Horizontal earthquake (Kh) = 0.1 - Normal uplift pressure with gallery drain working - Silt deposit up to 30 m height - No wave pressure and no ice pressure Unit weight of concrete = 2.4 Ton/m³ and unit weight of silty water = 1.4 Ton/m³ - Submerged weight of silt = 0.9 Ton/m³ == - Coefficient of friction = 0.65 and angle of repose = 25° Solve this question with the presence of gallery and without gallery., discuss the issue in both cases.... Solve in table 144 m BO 4m W 8m 6m 8m 17m 120marrow_forwardplease solve this problem step by steparrow_forwardP C⭑ LTU BANNER WEB Compute the capit... P Depreciation for N... COA 361276 CERT... O Unit price. Question 5 2 pts In the event that parties disagree about the meaning of constitution, statute, or regulation, a lawsuit can be filed asking the judge to clarify the meaning of that law. When the judge clarifies it, it is called: O Executive Order. O Common Law. O Legislation. O Civil Law. Question 6 ing branches, EXCEPT: 2 ptsarrow_forward
- 7,8 & 9 pleasearrow_forwardthe tied three-hinged arch is subjected to the loadings shown. Determine the components of reaction at A and C and the tension in the cablearrow_forwardCalculate internal moments at D and E for beam CDE showing all working. Assume the support at A is a roller and B is a pin. There are fixed connected joints at D and E. Assume P equals 9.6 and w equals 0.36arrow_forward
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning



