Principles of Geotechnical Engineering (MindTap Course List)
9th Edition
ISBN: 9781305970939
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 14, Problem 14.9P
To determine
Find the passive force
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
UPVOTE WILL BE GIVEN. WRITE THE COMPLETE SOLUTIONS LEGIBLY. NO LONG EXPLANATION NEEDED. BOX THE FINAL ANSWER.
UPVOTE WILL BE GIVEN. WRITE THE COMOLETE SOLUTIONS LEGIBLY. NO LONG EXPLANATION NEEDED. BOX THE FINAL ANSWER.
Someone can help me with this one please
Chapter 14 Solutions
Principles of Geotechnical Engineering (MindTap Course List)
Knowledge Booster
Similar questions
- Refer to the Coulumb Active Earth Pressure. Given alpha = 10 degree; Beta=85 degrees;H - 4m;unit weight of soil = 15 kN/m^3; soil friction angle = 30 degree; and sigma=15 degrees. Estimate the active force, Pa, per unit length of the wall. Also, state the direction and location of the resultant force, Pa.arrow_forward13.22 Consider the retaining wall shown in Figure 13.38. The height of the wall is 9.75m. and the unit weight of the sand backfill is 18.7kN/m3. Using Coulomb's equation, calculate the active force, Pa, on the wall for the following values of the angle of wall friction. Also, comment on the direction and location of the resultant.arrow_forwardPlease answer 13.13arrow_forward
- Please solve this problem step by step with clear calculations and solutions so I can understand the concept and theory behind the question. Thank youarrow_forwardDetermine the lateral earth pressure force on the wall (6.0 m height shown in the figure. Draw the stress distribution and locate the location of the resultant force. Sandy soil kN Ye = 20 O = 36.0°arrow_forwardQ: For the retaining wall shown in the following figure, determine the force per unit length of the wall for Rankine's active state. Also find the location of the resultant. 3 m z 3 m y = 16 kN/m³ ' = 30° c' = 0 Groundwater table Y sat = 18 kN/m³ ' = 35° c' = 0arrow_forward
- For the frictionless wall shown in Figure No 1, Calculate the following: (a) The active lateral earth pressure distribution with depth. (b) The passive lateral earth pressure distribution with depth(c) The magnitudes and locations of the active and passive forces. (d) The resultant force and its location. (e) The ratio of passive moment to active moment. Note: UDL should be considered as mentioned in the figurearrow_forward12.3 Refer to Figure 12.12a. Given: H = 4 m, y = 16.5 kN/m³, ' = 30°, c' = 0, and B = 85°. Determine the Coulomb's active force per meter length of the wall and the location and direction of the resultant for the following cases: a. a 10° and 8' = 20° b. a = 20° and 8' = 15°arrow_forwardQ 11.6arrow_forward
- You are working for a consulting firm that has been asked to evaluate the factor of safety of the wall shown in the figure supported by a well-degraded sand. The resultant load behind the concrete wall acts at the one third point. Dw 1m 1.5 m 24 kN/m³ y = 20 kN/m³ 26.5 kN/m 24° = 34° n = 0.4 3 m (a) Determine the factor of safety if Dw − D > 1.5B. Ignore the lateral passive resistance due to the soil in front of the wall. (b) Determine the factor of safety if the ground water table rises to 0.5 m below the base of the wall. Discuss the significance of your observations.arrow_forwardPlease only solve 12.15 PLEASE EXPLAIN TO ME HOW TO FIND THE LOCATION OF THE RESULTANT, I don't know how to take the moment about the buttom for each area, please explain, thank youarrow_forwardQuestion 3: A 4.5 m high wall with groundwater 1.5 m below from the top behind the wall has sandy backfill as shown. The bridge structure in front of the wall (which is not shown on the figure) prevents wall from movements. Calculate: a) the lateral force behind the wall exerted on the wall. b) the distance from the base of the wall to the center of this force. Bridge. 4.5 m 1.5 m y = 17 kN/m³ Ysat = 19 kN/m3 Sand c'= 0 $' = 37°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning