Find the magnitude and location of the passive force
Answer to Problem 14.11P
The magnitude of the passive force
The location of the resultant measured from the bottom of the wall is
Explanation of Solution
Given information:
The magnitude of surcharge loading (q) is
The unit weight
The height (H) of the retaining wall is 7.0 m.
The soil friction angle
The angle of wall friction
The cohesion
The soil-wall interfall adhesion
The horizontal inertial
The vertical inertial
Calculation:
Determine the ratio of angle of wall friction to the soil friction angle.
Determine the ratio of soil-wall interfall adhesion to the cohesion.
Determine the magnitude of the passive force due to earthquake conditions using the formula.
Here,
Refer Figure (14.9b) “Variation of
For
Take the value of
Refer Figure (14.10b) “Variation of
For
Take the value of
Refer Table (14.7) “Variation of
For the ratio of angle of wall friction to the soil friction angle is 0.5.
The value of
Substitute
Thus, the magnitude of the passive force
Determine the unit weight of the passive force
Substitute
Determine the distance of passive earth force acting above the bottom of the wall using the relation.
Substitute 7.0 m for H.
Determine the weight of surcharge component using the formula.
Substitute
Determine the distance of surcharge component acting above the bottom of the wall using the relation.
Substitute 7.0 m for H.
Determine the unit weight of the cohesion component using the formula.
Substitute
Determine the distance of cohesion component acting above the bottom of the wall using the relation.
Substitute 7.0 m for H.
Determine the location of the resultant measured from the bottom of the wall using the formula.
Substitute
Thus, the location of the resultant measured from the bottom of the wall is
Want to see more full solutions like this?
Chapter 14 Solutions
Principles of Geotechnical Engineering (MindTap Course List)
- For the beam show below, draw A.F.D, S.F.D, B.M.D A 2 N M 10 kN.m B 2 M Carrow_forwardB: Find the numerical solution for the 2D equation below and calculate the temperature values for each grid point shown in Fig. 2 (show all steps). (Do only one trail using following initial values and show the final matrix) T₂ 0 T3 0 I need a real solution, not artificial intelligence locarrow_forward: +0 العنوان use only Two rods fins) having same dimensions, one made orass (k = 85 Wm K) and the mer of copper (k = 375 W/m K), having of their ends inserted into a furna. At a section 10.5 cm a way from furnace, the temperature of brass rod 120 Find the distance at which the ame temperature would be reached in the per rod ? both ends are ex osed to the same environment. ns 2.05 ۲/۱ ostrararrow_forward
- I need a real solution, not artificial intelligencearrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forward
- I need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forward
- I need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forward
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning