(a)
Interpretation:
The rate constant for the given reaction needs to be determined.
Concept introduction:
In chemistry, activation energy is the minimum energy which is needed to activate molecules or atoms to a situation in which they can experience chemical transformation. The activation energy is usually denoted by Eaand below is the relation between rate constant and activation energy:
The above equation is Arrhenius equation.
Here, A is Arrhenius constant, R is Universal gas constant and T is temperature.
(b)
Interpretation:
Whether the ONF molecule is linear or bent needs to be determined.
Concept introduction:
The geometry of the molecule can be determined by calculating the hybridization of the central atom in the molecule. The lone pair of electron/s present in the central atom plays an important role in determining the exact geometry or shape of the molecule.
(c)
Interpretation:
A plausible transition state for the below reaction needs to be drawn.
Concept introduction:
Transition state is defined as an intermediate state of the reaction. It is less stable and immediately converts to product.
(d)
Interpretation:
The reason for the low activation energy of the given reaction needs to be explained.
Concept introduction:
The activation energy for a reaction is defined as the minimum energy which is needed for a reaction to takes place.

Want to see the full answer?
Check out a sample textbook solution
Chapter 14 Solutions
LCPO CHEMISTRY W/MODIFIED MASTERING
- (9 Pts) In one of the two Rare Earth element rows of the periodic table, identify an exception tothe general ionization energy (IE) trend. For the two elements involved, answer the followingquestions. Be sure to cite sources for all physical data that you use.a. (2 pts) Identify the two elements and write their electronic configurations.b. (2 pts) Based on their configurations, propose a reason for the IE trend exception.c. (5 pts) Calculate effective nuclear charges for the last electron in each element and theAllred-Rochow electronegativity values for the two elements. Can any of these valuesexplain the IE trend exception? Explain how (not) – include a description of how IErelates to electronegativity.arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardDon't use AIarrow_forward
- please solve this problem by telling me which boxes to check. Thank you in advance!arrow_forwardExplain what characteristics of metalloids are more like metals and which are more like nonmetals, based on Na, Mg, Fe, Cl, and Ar.arrow_forwardplease solve this, and help me know which boxes to check. Thank you so much in advance.arrow_forward
- Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons. Describe how electronegativity is illustrated on the periodic table including trends between groups and periods and significance of atom size.arrow_forwardDefine the term “transition.” How does this definition apply to the transition metals?arrow_forwardDescribe how the properties of the different types of elements (metals, nonmetals, metalloids) differ.arrow_forward
- Use a textbook or other valid source to research the physical and chemical properties of each element listed in Data Table 1 using the following as a guideline: Ductile (able to be deformed without losing toughness) and malleable (able to be hammered or pressed permanently out of shape without breaking or cracking) or not ductile or malleable Good, semi, or poor conductors of electricity and heat High or low melting and boiling points Occur or do not occur uncombined/freely in nature High, intermediate, or low reactivity Loses or gains electrons during reactions or is not reactivearrow_forwardProvide the Physical and Chemical Properties of Elements of the following elements listedarrow_forwardQuestions 4 and 5arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning




