
Interpretation:
In the following reaction of formation of N2O4.
An empty flask of 10.0 L contains 4.60 g of NO2 at 100 0C. Calculate the total pressure at equilibrium in the flask.
Concept introduction:
Equilibrium is the process in which temperature, pressure, concentration of reactant and product do not show any change with respect to time.
There are two types of equilibrium.
- Physical equilibrium: In this, the physical state of the reactant and the product does not change when dynamic equilibrium occurred.
Chemical equilibrium : In this, the chemical composition of reactant and product does not change when dynamic equilibrium occurred. There are two types of reaction occurred in this.
(a) Reversible reactions: In this reaction, reaction can occur in two ways, where reactant can convert to product as well as product can convert back to reactant.
(b) Irreversible reaction: In this reaction, reaction cannot occur in two ways where reactant can convert to product, but product cannot convert back to reactant.
Equilibrium constant
Reaction quotient Q is defined as the ratio at any point of the reaction of the concentration of the product raised to the power of their stoichiometric coefficients and reactant raised to the power of their stoichiometric coefficients.
To calculate:
The total pressure at equilibrium exerts a 10.0 L flask.

Want to see the full answer?
Check out a sample textbook solution
Chapter 14 Solutions
Chemistry (7th Edition)
- Please see photoarrow_forward=Naming benzene derivatives Name these organic compounds: structure C1 CH3 name ☐ CH3 ப C1 × ☐arrow_forwardBlocking Group are use to put 2 large sterically repulsive group ortho. Show the correct sequence toconnect the reagent to product with the highest yield possible. * see image **NOTE: The compound on the left is the starting point, and the compound on the right is the final product. Please show the steps in between to get from start to final, please. These are not two different compounds that need to be worked.arrow_forward
- Nucleophilic Aromatic Substitution: What is the product of the reaction? What is the name of the intermediate complex? *See imagearrow_forwardPredict the final product. If 2 products are made, list which should be “major” and “minor” *see attachedarrow_forwardNucleophilic Aromatic Substitution: What is the product of the reaction? *see imagearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





