Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977237
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 14.112RP
For the ceiling-mounted fan shown, determine the maximum allowable air velocity in the slipstream if the bending moment in the supporting rod AB is not to exceed 80 ft lb. Assume
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 60° bend occurs in a water pipeline that reduces from 600 mm diameter to 300 mm diameter at the bend (inside bend angle 120). If the gauge pressure at the inlet is
172 KPa, determine the magnitude ad angle of the thrust on the bend when the flow is 0.85 m3/s. Hint: start by calculating the initial and final velocities, then the final
pressure. Next, analyze the pressure and momentum forces in the x and y planes.
Consider the bend shown in . The total mass of the bend and the
water within it is 20 kg, with a mass center at point G. The
pressure of the water at A is 50 kPa Assume that no force is
transferred to the flanges at A and B. Suppose the velocity
through the pipe to be 4.5 m/s.
100 mm
By
60
100 mm
600 mm
150 mm-
100 mm
D
Part A
Determine the horizontal component of force exerted on the fixed support D.
Express your answer to three significant figures and include the appropriate units.
A 60 degrees bend occurs in a water pipeline that reduces from 600 mm diameter to 300 mm diameter at the bend (inside bend angle 120 degrees). If the gauge pressure at the inlet is 172 kPa, determine the magnitude and angle of the thrust on the bend when the flow is 0.85 m3 /s. Hint: start by calculating the initial and final velocities, then the final pressure. Next, analyse the pressure and momentum forces in the x and y planes.
Chapter 14 Solutions
Vector Mechanics For Engineers
Ch. 14.1 - A 30-g bullet is fired with a horizontal velocity...Ch. 14.1 - Two identical 1350-kg automobiles A and B are at...Ch. 14.1 - Prob. 14.3PCh. 14.1 - Prob. 14.4PCh. 14.1 - Two swimmers A and B, of weight 190 lb and 125 lb,...Ch. 14.1 - A 180-lb man and a 120-lb woman stand side by side...Ch. 14.1 - A 40-Mg boxcar A is moving in a railroad...Ch. 14.1 - Two identical cars A and B are at rest on a...Ch. 14.1 - A 20-kg base satellite deploys three...Ch. 14.1 - For the satellite system of Prob. 14.9. assuming...
Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three particles A, B, and C....Ch. 14.1 - For the system of particles of Prob. 14.13,...Ch. 14.1 - A 13-kg projectile is passing through the origin O...Ch. 14.1 - A 300-kg space vehicle traveling with a velocity...Ch. 14.1 - A 2-kg model rocket is launched vertically and...Ch. 14.1 - An 18-kg cannonball and a 12-kg cannonball are...Ch. 14.1 - Prob. 14.19PCh. 14.1 - Prob. 14.20PCh. 14.1 - An expert archer demonstrates his ability by...Ch. 14.1 - Two spheres, each of mass m, can slide freely on a...Ch. 14.1 - Prob. 14.23PCh. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - In a scattering experiment, an alpha particle A is...Ch. 14.1 - Derive the relation Ho=rmv+HG between the angular...Ch. 14.1 - Show that Eq. (14.23) may be derived directly from...Ch. 14.1 - Consider the frame of reference Ax'y'z' in...Ch. 14.1 - Show that the relation MA=HA where HA is defined...Ch. 14.2 - Determine the energy lost due to friction and the...Ch. 14.2 - Prob. 14.32PCh. 14.2 - In Prob. 14.6. determine the work done by the...Ch. 14.2 - Determine the energy lost as a result of the...Ch. 14.2 - Two automobiles A and B, of mass mA and mB,...Ch. 14.2 - It is assumed that each of the two automobiles...Ch. 14.2 - Solve Sample Prob. 14.5, assuming that cart A is...Ch. 14.2 - Ball B is suspended from a cord of length l...Ch. 14.2 - A 15-lb block B starts from rest and slides on the...Ch. 14.2 - A 40-lb block B is suspended from a 6-ft cord...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - Three spheres, each with a mass of m, can slide...Ch. 14.2 - In a game of pool, ball A is moving with the...Ch. 14.2 - The 2-kg sub-satellite B has an initial velocity...Ch. 14.2 - A 900-lb space vehicle traveling with a velocity...Ch. 14.2 - Four small disks A, B, C, and D can slide freely...Ch. 14.2 - In the scattering experiment of Prob. 14.26, it is...Ch. 14.2 - Prob. 14.49PCh. 14.2 - Three small spheres A, B, C, each of mass m, are...Ch. 14.2 - In a game of billiards, ball A is given an initial...Ch. 14.2 - For the game of billiards of Prob. 14.51, it is...Ch. 14.2 - Two small disks A and B of mass 3 kg and 1.5 kg,...Ch. 14.2 - Two small disks A and B of mass 2 kg and 1 kg,...Ch. 14.2 - Prob. 14.55PCh. 14.2 - Prob. 14.56PCh. 14.3 - A stream of water with a density of =1000kg/m3 is...Ch. 14.3 - A jet ski is placed in a channel and is tethered...Ch. 14.3 - Tree limbs and branches are being fed at A at the...Ch. 14.3 - The nozzle shown discharges water at the rate of...Ch. 14.3 - A rotary power plow is used to remove snow from a...Ch. 14.3 - A hose discharges water at a rate of 8 m3/min with...Ch. 14.3 - Sand falls from three hoppers onto a conveyor belt...Ch. 14.3 - The stream of water shown flows at a rate of 550...Ch. 14.3 - The nozzle shown discharges water at the rate of...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m/min...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m3/min...Ch. 14.3 - Prob. 14.68PCh. 14.3 - The total drag due to air friction on a jet...Ch. 14.3 - Prob. 14.70PCh. 14.3 - In order to shorten the distance required for...Ch. 14.3 - The helicopter shown can produce a maximum...Ch. 14.3 - Prior to takeoff, the pilot of a 3000-kg...Ch. 14.3 - The jet engine shown scoops in air at A at a rate...Ch. 14.3 - A jet airliner is cruising at a speed of 900 km/h...Ch. 14.3 - A 16-Mg jet airplane maintains a constant speed of...Ch. 14.3 - The propeller of a small airplane has a...Ch. 14.3 - The wind turbine generator shown has an...Ch. 14.3 - A wind turbine generator system having a diameter...Ch. 14.3 - While cruising in level flight at a speed of 570...Ch. 14.3 - In a Pelton-wheel turbine, a stream of water is...Ch. 14.3 - A circular reentrant orifice (also called Borda’s...Ch. 14.3 - A railroad car with length L and mass mg when...Ch. 14.3 - The depth of water flowing in a rectangular...Ch. 14.3 - Determine the rate of flow in the channel of Prob....Ch. 14.3 - A chain of length I and mass m lies in a pile on...Ch. 14.3 - Solve Prob. 14.86, assuming that the chain is...Ch. 14.3 - The ends of a chain lie in piles at A and C. When...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - The main propulsion system of a new space...Ch. 14.3 - The main propulsion system of a new space...Ch. 14.3 - A rocket sled bums fuel at the constant rate of...Ch. 14.3 - A space vehicle describing a circular orbit about...Ch. 14.3 - A 540-kg spacecraft is mounted on top of a rocket...Ch. 14.3 - The rocket used to launch the 540-kg spacecraft of...Ch. 14.3 - The weight of a spacecraft, including fuel, is...Ch. 14.3 - The rocket engines of a spacecraft are fired to...Ch. 14.3 - Determine the distance traveled by the spacecraft...Ch. 14.3 - A rocket weighs 2600 lb. including 2200 lb of...Ch. 14.3 - Determine the altitude reached by the spacecraft...Ch. 14.3 - For the spacecraft and the two-stage launching...Ch. 14.3 - In a jet airplane, the kinetic energy imparted to...Ch. 14.3 - In a rocket, the kinetic energy imparted to the...Ch. 14 - Three identical cars are being unloaded from an...Ch. 14 - A 50-kg mother and her 26-kg son are sledding down...Ch. 14 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 14 - In a game of pool, ball A is moving with a...Ch. 14 - Mass C, which has a mass of 4 kg, is suspended...Ch. 14 - A 15-lb block B is at rest and a spring of...Ch. 14 - A 6000-kg dump truck has a 1500-kg stone block...Ch. 14 - For the ceiling-mounted fan shown, determine the...Ch. 14 - An airplane with a weight W and a total wing span...Ch. 14 - The final component of a conveyor system receives...Ch. 14 - A garden sprinkler has four rotating arms, each of...Ch. 14 - A chain of length I and mass m falls through a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water is flowing into and discharging from a pipe U-section as shown . At flange (1), the total absolute pressure is 200 kPa, and 55 kg/s flows into the pipe. At flange (2), the total pressure is 150 kPa. At location (3), 15 kg/s of water discharges to the atmosphere, which is at 100 kPa. Determine the total x- and z-forces at the two flanges connecting the pipe. Discuss the significance of gravity force for this problem. Take the momentum-flux correction factor to be 1.03 throughout the pipesarrow_forwardWater is flowing into and discharging from a pipe U-section as shown in the given figure. At flange (1), the total absolute pressure is 200 kPa, and 59 kg/s flows into the pipe. At flange (2), the total pressure is 150 kPa. At location (3), 17 kg/s of water discharges to the atmosphere, which is at 100 kPa. Determine the total x- and z-forces at the two flanges connecting the pipe. Discuss the significance of gravity force for this problem. Take the momentum-flux correction factor to be 1.03 throughout the pipes. Take the density of water to be 1000 kg/m3. z kg/s 3 сm y kg/s L10 cm x kg/s. 5 cm The value of the force FRx is N. The value of the force FRZ is N.arrow_forwardA jet strikes a stationery curved vane without shock and is deflected 150° from its original direction. The discharge from the jet is 0.68kg/s and the velocity is 24m/s. Assume that there is no reduction of relative velocity due to friction and determine the magnitude and direction of the resultant force on the vane. If the vane is allowed to move with velocity of 8m/s in the direction of the jet, calculate the power developedarrow_forward
- Assuming that the fluid enters to the pump with no shock / no swirl, construct the velocity triangles at both inner and outer diameters of the impeller for the case where the blade angle at the outlet is: β2 = 90o, and β2 = 130oarrow_forwardThe jet of water from a nozzle discharging into air has a diameter of 6in and a mean velocity of 36.58m/s. what is the kinetic energy produced?arrow_forwardWater is flowing into and discharging from a pipe U-section as shown in the Figure. At flange (1), the total absolute pressure is 135 kPa, and 50 kg/s flows into the pipe. At flange (2), the total pressure is 125 kPa. At location (3), 10 kg/s of water discharges to the atmosphere, which is at 100 kPa. Determine the total x-and z- forces at the two flanges connecting the pipe. Discuss the importance of gravity force for this problem. Take the momentum flux correction factor to be 1.03 throughout the pipe. 10 kg/s - 3 cm 40 kg/s - 10 cm 50 kg/s 5 cmarrow_forward
- 5. The jets from both nozzles go out into the atmosphere at a speed of 35p/s. The liquid is water. The axes of the tube and both nozzles lie in a horizontal plane. Determine the forces that the fluid exerts on the support at A to keep the system in that positionarrow_forwardplease solve fastarrow_forwardThe drawing shows a centrifugal fan. The fan draws 25 m^3/s of air from the room through the 0.75 diameter bellmouth inlet. The air is discharged into a 0.5 m diameter pipe which is connected to the downstream piping by a flexible connector. Note that the flexible connector does not transmit any forces or momentum between the connected components. Determine the forces in the x and y directions which the floor must apply to hold the fan in place. Assume incompressible flow with p=1.3 kg/m^3. Atmospheric pressure is 101 kPa.arrow_forward
- 2. A horizontal nozzle discharges 0.01 m³/s of water into the air. The supply pipe's diameter (d = 40 mm) is twice as large as the nozzle diameter (dB = 20 mm). The nozzle is held in place by a hinge mechanism. Determine the magnitude and direction of the reaction force at the hinge, if the gauge pressure at A is 500 000 N/m2. Assume the weight supported by hinge is negligible. Ans.: Fr= 614 N, 0 = 26.6⁰. FA da 8 = 60° 10arrow_forwardA pipe bend has a cross sectional area of 0.01 m2 at inlet and 0.0025 m2 at outlet. It bends 900 from its initial direction. The velocity is 4 m/s at inlet with a pressure of 100 kPa gauge. The density is 1000 kg/m3. Calculate the forces acting parallel and perpendicular to the initial direction. V1 v2arrow_forwardtake m and k as ; m= 0.18 kg, k = 128 N/marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY