Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14, Problem 14.10QP
Predict whether the entropy change is positive or negative for each of the following reactions. Give reasons for your predictions.
(a) 2KClO4(S) → 2KClO3(s) + O2(g)
(b) H2O(g) → H2O(l)
(c) 2Na(s) + 2H2O(l) → 2NaOH(aq) + H2(g)
(d) N2(g) → 2N(g)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Chemistry: Atoms First
Ch. 14.3 - Determine the change in entropy for 1.0 mole of an...Ch. 14.3 - Determine the change in entropy (Ssys) for the...Ch. 14.3 - To what fraction of its original volume must a...Ch. 14.3 - From the standard entropy values in Appendix 2,...Ch. 14.3 - Prob. 2PPACh. 14.3 - In each of the following reactions, there is one...Ch. 14.3 - For each reaction shown in the diagrams, indicate...Ch. 14.3 - For each process, determine the sign of S for the...Ch. 14.3 - Prob. 3PPACh. 14.3 - Make a qualitative prediction of the sign of Hsoln...
Ch. 14.3 - Consider the gas-phase reaction of A2 (blue) and...Ch. 14.3 - Prob. 14.3.1SRCh. 14.3 - Prob. 14.3.2SRCh. 14.3 - Prob. 14.3.3SRCh. 14.4 - Determine if each of the following is a...Ch. 14.4 - For each of the following, calculate Suniv and...Ch. 14.4 - (a) Calculate Suniv and determine if the reaction...Ch. 14.4 - The following table shows the signs of Ssys,...Ch. 14.4 - Prob. 14.4.1SRCh. 14.4 - Prob. 14.4.2SRCh. 14.4 - Prob. 14.4.3SRCh. 14.5 - According to Table 14 4, a reaction will be...Ch. 14.5 - A reaction will be spontaneous only at low...Ch. 14.5 - Given that the reaction 4Fe(s) + 3O2(g) + 6H2O(l) ...Ch. 14.5 - Prob. 5PPCCh. 14.5 - Prob. 14.6WECh. 14.5 - Prob. 6PPACh. 14.5 - For each reaction, determine the value of Gf that...Ch. 14.5 - Prob. 6PPCCh. 14.5 - Prob. 14.7WECh. 14.5 - Prob. 7PPACh. 14.5 - Prob. 7PPBCh. 14.5 - Prob. 7PPCCh. 14.5 - Prob. 14.5.1SRCh. 14.5 - Prob. 14.5.2SRCh. 14.5 - Prob. 14.5.3SRCh. 14 - Explain what is meant by a spontaneous process....Ch. 14 - Which of the following processes are spontaneous...Ch. 14 - Prob. 14.3QPCh. 14 - Prob. 14.4QPCh. 14 - Prob. 14.5QPCh. 14 - Prob. 14.6QPCh. 14 - Prob. 14.7QPCh. 14 - Consider two gas samples at STP: one consisting of...Ch. 14 - Now consider the reaction F2(g)2F(g)at constant...Ch. 14 - Which of the following best describes why entropy...Ch. 14 - Which of the following best explains why entropy...Ch. 14 - How does the entropy of a system change for each...Ch. 14 - How does the entropy of a system change for each...Ch. 14 - Predict whether the entropy change is positive or...Ch. 14 - Prob. 14.11QPCh. 14 - Prob. 14.12QPCh. 14 - Prob. 14.13QPCh. 14 - Using the data in Appendix 2, calculate the...Ch. 14 - Using the data in Appendix 2, calculate the...Ch. 14 - For each pair of substances listed here, choose...Ch. 14 - Arrange the following substances (1 mole each) in...Ch. 14 - State the second law of thermodynamics in words,...Ch. 14 - State the third law of thermodynamics in words,...Ch. 14 - Calculate Ssurr for each of the reactions in...Ch. 14 - Calculate Ssurr for each of the reactions in...Ch. 14 - Using data from Appendix 2, calculate Srxn and...Ch. 14 - Using data from Appendix 2, calculate Srxn and...Ch. 14 - When a folded protein in solution is heated to a...Ch. 14 - Define free energy. What are its units?Ch. 14 - Why is it more convenient to predict the direction...Ch. 14 - What is the significance of the sign of Gsys?Ch. 14 - From the following combinations of H and S,...Ch. 14 - Prob. 14.29QPCh. 14 - Calculate G for the following reactions at 25C....Ch. 14 - Calculate G for the following reactions at 25C....Ch. 14 - From the values of H and S, predict which of the...Ch. 14 - Find the temperatures at which reactions with the...Ch. 14 - The molar heats of fusion and vaporization of...Ch. 14 - The molar heats of fusion and vaporization of...Ch. 14 - Use the values listed in Appendix 2 to calculate G...Ch. 14 - Certain bacteria in the soil obtain the necessary...Ch. 14 - What is a coupled reaction? What is its importance...Ch. 14 - What is the role of ATP in biological reactions?Ch. 14 - Prob. 14.40QPCh. 14 - Predict the signs of H, S, and G of the system for...Ch. 14 - A student placed 1 g of each of three compounds A,...Ch. 14 - The enthalpy change in the denaturation of a...Ch. 14 - Consider the following facts: Water freezes...Ch. 14 - Ammonium nitrate (NH4NO3) dissolves spontaneously...Ch. 14 - The standard enthalpy of formation and the...Ch. 14 - (a) Troutons rule states that the ratio of the...Ch. 14 - Referring to Problem 14.47, explain why the ratio...Ch. 14 - Prob. 14.49QPCh. 14 - Prob. 14.50QPCh. 14 - Prob. 14.51QPCh. 14 - Prob. 14.52QPCh. 14 - Prob. 14.53QPCh. 14 - The molar heat of vaporization of ethanol is 39 3...Ch. 14 - As an approximation, we can assume that proteins...Ch. 14 - When a native protein in solution is heated to a...Ch. 14 - A 74.6-g ice cube floats in the Arctic Sea. The...Ch. 14 - A reaction for which H and S are both negative is...Ch. 14 - The sublimation of carbon dioxide at 78C is given...Ch. 14 - Many hydrocarbons exist as structural isomers,...Ch. 14 - Consider the following reaction at 298 K. 2H2(s) +...Ch. 14 - Which of the following is not accompanied by an...Ch. 14 - Which of the following are not state functions: S,...Ch. 14 - Give a detailed example of each of the following,...Ch. 14 - Hydrogenation reactions (e.g., the process of...Ch. 14 - At 0 K. the entropy of carbon monoxide crystal is...Ch. 14 - Which of the following thermodynamic functions are...Ch. 14 - Using Gf values from Appendix 2, calculate the...Ch. 14 - Prob. 14.2KSPCh. 14 - Using Grxnvalues from Appendix 2, calculate the...Ch. 14 - Prob. 14.4KSP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- For each process, predict whether entropy increases or decreases, and explain how you arrived at your prediction. 2 CO2(g) → 2 CO(g) + O2(g) NaCl(s) → NaCl(aq) MgCO3(s) → MgO(s) + CO2(g)arrow_forwardThe molecular scale pictures below show snapshots of a strong acid at three different instants after it is added to water. Place the three pictures in the correct order so that they show the progress of the spontaneous process that takes place as the acid dissolves in the water. Explain your answer in terms of entropyarrow_forwardWhich contains greater entropy, a quantity of frozen benzene or the same quantity of liquid benzene at the same temperature? Explain in terms of the dispersal of energy in the substance.arrow_forward
- For each of the following processes, identify the systemand the surroundings. Identify those processes that arespontaneous. For each spontaneous process, identify theconstraint that has been removed to enable the process to occur: Ammonium nitrate dissolves in water. Hydrogen and oxygen explode in a closed bomb. A rubber band is rapidly extended by a hangingweight. The gas in a chamber is slowly compressed by aweighted piston. A glass shatters on the floor.arrow_forwardFor one day, keep a log of all the activities you undertake that consume Gibbs free energy. Distinguish betweenGibbs free energy provided by nutrient metabolism andthat provided by other energy resources.arrow_forwardWithout looking up their standard entropies in reference tables, identify which of the following lists the materials in order of increasing entropy. (a) H2O() NaCl(s) NH3(g) (b) H2O() NH3(g) NaCl(s) (c) NaCl(s) H2O() NH3(g) (d) NH3(g) H2O() NaCl(s)arrow_forward
- Describe the energy and entropy changes that occur in the following processes, and indicate whether the processes are spontaneous under the conditions stated: a.Lumber becomes a house b.A seed grows into a tree. c.On a hot day, water evaporates from a lake.arrow_forwardAnother step in the metabolism of glucose, which occurs after the formation of glucose6-phosphate, is the conversion of fructose6-phosphate to fructose1,6-bisphosphate(bis meanstwo): Fructose6-phosphate(aq) + H2PO4(aq) fructose l,6-bisphosphate(aq) + H2O() + H+(aq) (a) This reaction has a Gibbs free energy change of +16.7 kJ/mol of fructose6-phosphate. Is it endergonic or exergonic? (b) Write the equation for the formation of 1 mol ADP fromATR for which rG = 30.5 kJ/mol. (c) Couple these two reactions to get an exergonic process;write its overall chemical equation, and calculate theGibbs free energy change.arrow_forwardThere are millions of organic compounds known, and new ones are being discovered or made at a rate of morethan 100,000 compounds per year. Organic compoundsburn readily in air at high temperatures to form carbondioxide and water. Several classes of organic compoundsare listed, with a simple example of each. Write a balanced chemical equation for the combustion in O2ofeach of these compounds, and then use the data inAppendix J to show that each reaction is product-favoredat room temperature. From these results, it is reasonable to hypothesize thatallorganic compounds are thermodynamically unstable inan oxygen atmosphere (that is, their room-temperaturereaction with O2(g) to form CO2(g) and H2O() isproduct-favored). If this hypothesis is true, how canorganic compounds exist on Earth?arrow_forward
- For each process, tell whether the entropy change of the system is positive or negative. (a) A glassblower heats glass (the system) to its softening temperature. (b) A teaspoon of sugar dissolves in a cup of coffee. (The system consists of both sugar and coffee.) (c) Calcium carbonate precipitates out of water in a cave to form stalactites and stalagmites. (Consider only the calcium carbonate to be the system.)arrow_forwardYeast can produce ethanol by the fermentation of glucose (C6H12O6), which is the basis for the production of most alcoholic beverages. C6H12O6(aq) 2 C2H5OH() + 2 CO2(g) Calculate rH, rS, and rG for the reaction at 25 C. Is the reaction product- or reactant-favored at equilibrium? In addition to the thermodynamic values in Appendix L, you will need the following data for C6H12O6(aq): fH = 1260.0 kl/mol; S = 289 J/K mol; and fG = 918.8 kl/mol.arrow_forwardWhat is entropy? Why is entropy important?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY