Concept explainers
(a)
Interpretation:
Structure of the given ether has to be drawn.
Concept Introduction:
Structure of ether can be derived from the common name or IUPAC name.
From common name:
The two hydrocarbon groups are given in alphabetical order in the common name. They both are attached through oxygen atom which leads to the structure of the ether.
From IUPAC name:
The base name is drawn first followed by attaching the alkoxy group at the correct number of carbon atom where it is substituted in the base name. This is indicated in the IUPAC name itself.
(b)
Interpretation:
Structure of the given ether has to be drawn.
Concept Introduction:
Structure of ether can be derived from the common name or IUPAC name.
From common name:
The two hydrocarbon groups are given in alphabetical order in the common name. They both are attached through oxygen atom which leads to the structure of the ether.
From IUPAC name:
The base name is drawn first followed by attaching the alkoxy group at the correct number of carbon atom where it is substituted in the base name. This is indicated in the IUPAC name itself.
(c)
Interpretation:
Structure of the given ether has to be drawn.
Concept Introduction:
Structure of ether can be derived from the common name or IUPAC name.
From common name:
The two hydrocarbon groups are given in alphabetical order in the common name. They both are attached through oxygen atom which leads to the structure of the ether.
From IUPAC name:
The base name is drawn first followed by attaching the alkoxy group at the correct number of carbon atom where it is substituted in the base name. This is indicated in the IUPAC name itself.
(d)
Interpretation:
Structure of the given ether has to be drawn.
Concept Introduction:
Structure of ether can be derived from the common name or IUPAC name.
From common name:
The two hydrocarbon groups are given in alphabetical order in the common name. They both are attached through oxygen atom which leads to the structure of the ether.
From IUPAC name:
The base name is drawn first followed by attaching the alkoxy group at the correct number of carbon atom where it is substituted in the base name. This is indicated in the IUPAC name itself.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
General, Organic, and Biological Chemistry
- At 0oC and 1 atm, the viscosity of hydrogen (gas) is 8.55x10-5 P. Calculate the viscosity of a gas, if possible, consisting of deuterium. Assume that the molecular sizes are equal.arrow_forwardIndicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the moleculesarrow_forwardIndicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the moleculesarrow_forward
- The number of imaginary replicas of a system of N particlesA) can never become infiniteB) can become infiniteC) cannot be greater than Avogadro's numberD) is always greater than Avogadro's number.arrow_forwardElectronic contribution to the heat capacity at constant volume A) is always zero B) is zero, except for excited levels whose energy is comparable to KT C) equals 3/2 Nk D) equals Nk exp(BE)arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Calculate the packing factor of CaTiO3. It has a perovskite structure. Data: ionic radii Co²+ = 0.106 nm, Ti4+ = 0.064 nm, O² = 0.132 nm; lattice constant is a = 2(rTi4+ + ro2-). Ca2+ 02- T14+ Consider the ions as rigid spheres. 1. 0.581 or 58.1% 2. -0.581 or -58.1 % 3. 0.254 or 25.4%arrow_forwardGeneral formula etherarrow_forwardPlease provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote! Please correct answer and don't used hand raitingarrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning