Concept explainers
(a)
Interpretation:
The number of covalent bonds that oxygen atom can form in an organic compound has to be given.
Concept Introduction:
All the atoms try to attain the octet configuration. They either gain or lose electrons, or share the electrons to get the stable octet structure. Covalent bonds are formed by mutual sharing of electrons between the atoms.
(a)
Answer to Problem 14.1EP
Oxygen can form two covalent bonds.
Explanation of Solution
Oxygen is a Group VIA element. Therefore, it has six valence electrons. All the elements try to attain the stable octet configuration either by losing, gaining or sharing the valence electrons. Oxygen is short of two electrons in order to obtain the octet configuration. Therefore, oxygen forms two bonds.
Oxygen is found to form two covalent bonds in organic compounds.
(b)
Interpretation:
The number of covalent bonds that Hydrogen atom can form in an organic compound has to be given.
Concept Introduction:
All the atoms try to attain the octet configuration. They either gain or lose electrons, or share the electrons to get the stable octet structure. Covalent bonds are formed by mutual sharing of electrons between the atoms.
(b)
Answer to Problem 14.1EP
Hydrogen can form one covalent bond.
Explanation of Solution
Hydrogen is a Group IA element. Therefore, it has only one valence electron. All the elements try to attain the stable octet configuration either by losing, gaining or sharing the valence electrons. Hydrogen is short of one electron in order to obtain the complete shell configuration. Therefore, hydrogen forms one covalent bond.
Hydrogen is found to form one covalent bond in organic compounds.
(c)
Interpretation:
The number of covalent bonds that carbon atom can form in an organic compound has to be given.
Concept Introduction:
All the atoms try to attain the octet configuration. They either gain or lose electrons, or share the electrons to get the stable octet structure. Covalent bonds are formed by mutual sharing of electrons between the atoms.
(c)
Answer to Problem 14.1EP
Carbon can form four covalent bonds.
Explanation of Solution
Carbon is a Group IVA element. Therefore, it has four valence electrons. All the elements try to attain the stable octet configuration either by losing, gaining or sharing the valence electrons. Carbon is short of four electrons in order to obtain the octet configuration. Therefore, carbon forms four covalent bonds.
Carbon is found to form four covalent bonds in organic compounds.
(d)
Interpretation:
The number of covalent bonds that halogen atom can form in an organic compound has to be given.
Concept Introduction:
All the atoms try to attain the octet configuration. They either gain or lose electrons, or share the electrons to get the stable octet structure. Covalent bonds are formed by mutual sharing of electrons between the atoms.
(d)
Answer to Problem 14.1EP
Halogen can form one covalent bond.
Explanation of Solution
Halogens are present in Group VIIA of periodic table. Therefore, it has seven valence electrons. All the elements try to attain the stable octet configuration either by losing, gaining or sharing the valence electrons. Halogens are in short of one electron in order to obtain the octet configuration. Therefore, halogens form one covalent bond.
Halogens are found to form one covalent bond in organic compounds.
Want to see more full solutions like this?
Chapter 14 Solutions
General, Organic, and Biological Chemistry
- Don't used Ai solutionarrow_forwardDon't used Ai solutionarrow_forward5. A solution of sucrose is fermented in a vessel until the evolution of CO2 ceases. Then, the product solution is analyzed and found to contain, 45% ethanol; 5% acetic acid; and 15% glycerin by weight. If the original charge is 500 kg, evaluate; e. The ratio of sucrose to water in the original charge (wt/wt). f. Moles of CO2 evolved. g. Maximum possible amount of ethanol that could be formed. h. Conversion efficiency. i. Per cent excess of excess reactant. Reactions: Inversion reaction: C12H22O11 + H2O →2C6H12O6 Fermentation reaction: C6H12O6 →→2C2H5OH + 2CO2 Formation of acetic acid and glycerin: C6H12O6 + C2H5OH + H₂O→ CH3COOH + 2C3H8O3arrow_forward
- Show work. don't give Ai generated solution. How many carbons and hydrogens are in the structure?arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B 2°C. +2°C. cleavage Bond A •CH3 + 26.← Cleavage 2°C. + Bond C +3°C• CH3 2C Cleavage E 2°C. 26. weakest bond Intact molecule Strongest 3°C 20. Gund Largest argest a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. C Weakest bond A Produces Most Bond Strongest Bond Strongest Gund produces least stable radicals Weakest Stable radical b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. 13°C. formed in bound C cleavage ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. • CH3 methyl radical Formed in Gund A Cleavage c.…arrow_forwardBr. COOH Br, FCH COOH E FeBr ASOCI B NH (CH,CO),OD Br₂ 2 C alcKOHarrow_forward
- Find A to F (all)arrow_forwardShow work. don't give Ai generated solutionarrow_forwardHi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER