Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 10PQ
To determine
The motion of lower body when the person bend forward, hinging from the hips and the reason for the motion.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A uniform barbell has length 1.5 m and mass 60 kg. Your left hand is placed 25 cm to the left of the center,
while your right hand is placed 35 cm to the right of the center. What is the magnitude of force exerted by
your left hand?
420 N
823 N
343 N
294 N
245 N
A 35 N forearm (we are ignoring the hand for this problem) are held at a 45 deg angle to the vertically oriented humerus. The COM of the forearm is located at a distance of 15 cm from the joint center at the elbow,
and the elbow flexor muscles have a 3 cm moment arm. How much force must be exerted by the elbow flexor muscles to maintain this position?
Hide answer choices A
A 35 N
C
81.7 N
123.7 N
D 371 N
Fm
45°
*
--Wt₂
In exercise physiology studies, it is sometimes important to determine the location of a person’s center of mass. This determination can be done with the arrangement as shown. A light plank rests on two scales, which read Fg1 = 380 N and Fg2 = 320 N. A distance of 1.65 m separates the scales. How far from the woman’s feet is her center of mass?
Chapter 14 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 14.1 - A rubber duck floats in a bathtub. Imagine moving...Ch. 14.1 - Prob. 14.2CECh. 14.2 - CASE STUDY Hanging a Plane from a Single Point In...Ch. 14.2 - Prob. 14.4CECh. 14.4 - Imagine two vertical rods initially of equal...Ch. 14 - What Is Static Equilibrium? Problems 13 are...Ch. 14 - Prob. 2PQCh. 14 - Two identical balls are attached to a...Ch. 14 - While working on homework together, your friend...Ch. 14 - Consider the sketch of a portion of a...
Ch. 14 - Prob. 6PQCh. 14 - Prob. 7PQCh. 14 - Prob. 8PQCh. 14 - The keystone of an arch is the stone at the top...Ch. 14 - Prob. 10PQCh. 14 - Stand straight and comfortably with your feet...Ch. 14 - Prob. 12PQCh. 14 - Prob. 13PQCh. 14 - Prob. 14PQCh. 14 - Prob. 15PQCh. 14 - Prob. 16PQCh. 14 - Prob. 17PQCh. 14 - Prob. 18PQCh. 14 - Prob. 19PQCh. 14 - Prob. 20PQCh. 14 - Prob. 21PQCh. 14 - The inner planets of our solar system are...Ch. 14 - Two Boy Scouts, Bobby and Jimmy, are carrying a...Ch. 14 - Prob. 24PQCh. 14 - A painter of mass 87.8 kg is 1.45 m from the top...Ch. 14 - Consider the situation in Problem 25. Tests have...Ch. 14 - Children playing pirates have suspended a uniform...Ch. 14 - Prob. 28PQCh. 14 - Prob. 29PQCh. 14 - A 5.45-N beam of uniform density is 1.60 m long....Ch. 14 - A wooden door 2.1 m high and 0.90 m wide is hung...Ch. 14 - A 215-kg robotic arm at an assembly plant is...Ch. 14 - Problems 33 and 34 are paired. One end of a...Ch. 14 - For the uniform beam in Problem 33, find the...Ch. 14 - Prob. 35PQCh. 14 - A square plate with sides of length 4.0 m can...Ch. 14 - Prob. 37PQCh. 14 - At a museum, a 1300-kg model aircraft is hung from...Ch. 14 - A uniform wire (Y = 2.0 1011 N/m2) is subjected...Ch. 14 - A brass wire and a steel wire, both of the same...Ch. 14 - In Example 14.3, we found that one of the steel...Ch. 14 - A carbon nanotube is a nanometer-scale cylindrical...Ch. 14 - A nanotube with a Youngs modulus of 1.000 1012 Pa...Ch. 14 - Consider a nanotube with a Youngs modulus of 2.130...Ch. 14 - Prob. 45PQCh. 14 - Use the graph in Figure P14.46 to list the three...Ch. 14 - Prob. 47PQCh. 14 - A company is testing a new material made of...Ch. 14 - Prob. 49PQCh. 14 - Prob. 50PQCh. 14 - Prob. 51PQCh. 14 - Prob. 52PQCh. 14 - Prob. 53PQCh. 14 - Prob. 54PQCh. 14 - Prob. 55PQCh. 14 - Prob. 56PQCh. 14 - A copper rod with length 1.4 m and cross-sectional...Ch. 14 - Prob. 58PQCh. 14 - Prob. 59PQCh. 14 - Bruce Lee was famous for breaking concrete blocks...Ch. 14 - Prob. 61PQCh. 14 - Prob. 62PQCh. 14 - Prob. 63PQCh. 14 - A One end of a metal rod of weight Fg and length L...Ch. 14 - Prob. 65PQCh. 14 - A steel cable 2.00 m in length and with...Ch. 14 - Prob. 67PQCh. 14 - Prob. 68PQCh. 14 - Prob. 69PQCh. 14 - Prob. 70PQCh. 14 - Prob. 71PQCh. 14 - Prob. 72PQCh. 14 - Prob. 73PQCh. 14 - We know from studying friction forces that static...Ch. 14 - Ruby, with mass 55.0 kg, is trying to reach a box...Ch. 14 - An object is being weighed using an unequal-arm...Ch. 14 - Prob. 77PQCh. 14 - A massless, horizontal beam of length L and a...Ch. 14 - A rod of length 4.00 m with negligible mass is...Ch. 14 - A rod of length 4.00 m with negligible mass is...Ch. 14 - A horizontal, rigid bar of negligible weight is...Ch. 14 - Prob. 82PQCh. 14 - Prob. 83PQCh. 14 - Prob. 84PQCh. 14 - Prob. 85PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Activity: Stand straight with your heels, back, and head against a wall. Bend forward from your waist, keeping your heels and Bottom against the wall, to touch your toes. Can you do this without toppling over? Explain why and what you need to do to be able to touch your toes without losing your balance. Is it easier for a woman to do this?arrow_forwardA person places his hand palm downward on a scale and pushes down on the scale until it reads 96.0 N. The triceps muscle is responsible for this arm extension force. Find the force exerted by the triceps muscle. The bottom of the triceps muscle is 2.50 cm to the left of the elbow joint, and the palm is pushing at approximately 29.0 cm to the right of the elbow joint. P 96.0 N 2.50 cm and Q = 29.0 cm. where P =arrow_forwardA person is standing on a level floor. His head, upper torso, arms, and hands together weigh 438 N and have a center of gravity that is 1.28 m above the floor. His upper legs weigh 144 N and have a center of gravity that is 0.760 m above the floor. Finally, his lower legs and feet together weigh 87 N and have a center of gravity that is 0.250 m above the floor. Relative to the floor, find the location of the 11. center of gravity for his entire body.arrow_forward
- Scientists have studied how snakes grip and climb ropes. In one study, they found that an important characteristic of a rope is its “compliance”— that is, how easily the rope, while under tension, can be flexed. As shown how scientists measured a rope’s compliance by attaching it to two strings, each supporting an identical mass m. The strings contort the rope so that its middle section lies at angle θ. For θ = 30° and m = 100 g, what are the tensions T1 and T2 in the upper and middle parts of the rope?arrow_forwardB1arrow_forwardA person carries a plank of wood 2.00 m long with one hand pushing it down at one end with a force F1 and the other hand holding it up with a force F2 at a distance of 0.500 m from the same end of the plank. If the plank has mass 20.0 kg and the center of mass of the plank is in the middle of the plank, what are the magnitudes of the forces F1 and F2? a. F1 = 392.4 N, F2 = 196.2 N b. F1 = 392.4 N, F2 = 392.4 N c. F1 = 196.2 N, F2 = 392.4 N d. F1 = 196.2 N, F2 = 196.2 Narrow_forward
- A person is standing on a level floor. His head, upper torso, arms, and hands together weigh 435 N and have a center of gravity that is 1.33 m above the floor. His upper legs weigh 134 N and have a center of gravity that is 0.714 m above the floor. Finally, his lower legs and feet together weigh 83.1 N and have a center of gravity that is 0.201 m above the floor. Relative to the floor, find the location of the center of gravity for the entire body. Number i Unitsarrow_forwardEven when the head is held erect, as shown in the figure, its center of mass is not directly over the principal point of support (the atlanto-occipital joint, Point A). The muscles at the back of the neck should, therefore, exert a force to keep the head erect. That is why your head falls forward when you fall asleep in the class. If the head weighs 55 N, calculate the force exerted by the muscles ?M using the information in the figure. Assume that ?1=5.3 cm, ?2=2.5 cm, and ∣∣?⃗ w∣∣=55 N. What is the force FJ exerted by the pivot on the head?arrow_forwardEven when the head is held erect, as shown in the figure, its center of mass is not directly over the principal point of support (the atlanto-occipital joint, Point A). The muscles at the back of the neck should, therefore, exert a force to keep the head erect. That is why your head falls forward when you fall asleep in the class. F If the head weighs 51 N, calculate the force exerted by the muscles FM using the information in the figure. Assume that X1 = 5.3 cm, X2 = 2.5 cm, and JFw|=SIN.arrow_forward
- 8₁ 02 9. The diagram of the leg shows the femur (1) and tibia (2). The quadriceps muscle (3) applies a force to the lower leg via a tendon (4) that is embedded with the kneecap (5). If the force applied by the muscle to the tendon is F 570 N, what is the force of the femur on the kneecap, if the leg is in equilibrium? A simplified model of the leg is shown next to the diagram. The leg bones are represented by two beams attached by a pin. The tendon is modelled by a rope and the kneecap acts like a pulley. The tendon above the kneecap makes an angle 8, = 38° with respect to the vertical, and the portion of the tendon below the kneecap makes an angle of 6₂ = 10° with respect to the vertical. Enter the x component, followed by the y component. Answer 1 of 2: Answer 2 of 2: Submit All Answersarrow_forwardA bowler holds a bowling ball with mass M = 6.7 kg in the palm of his hand. Lower arm has mass m = 1.6 kg. As the figure shows, his upper arm is vertical and his lower arm is horizontal.What is the magnitude of (a) the force of the biceps muscle on the lower arm and (b) the force between the bony structures at the elbow contact point? Biceps Elbow contact point 4.0 cm 18 cm- (a) Number (b) Number 32 cm- Lower arm (forearm plus hand) center of mass Units Unitsarrow_forwardA 50 N hand and forearm are held at a 35° angle to the vertically oriented humerus. The CG of the forearm and hand is located at a distance of 12.5 cm from the joint center at the elbow, and the elbow flexor muscles attach at an average distance of 2.5 cm from the joint center. (Assume that the muscles attach at an angle of 35° to the forearm bones.) How much force must be exerted by the forearm flexors to maintain this position?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University