The critically endangered Maui’s dolphin is currently restricted to a relatively small stretch of coastline along the west coast of New Zealand’s North Island. The dolphins are “captured” by just collecting samples of DNA and “tagged” by identifying their DNA fingerprint. A 2010-2011 capture-recapture study “captured” and “tagged” 26 Maui’s dolphins in 2010. In 2011, 27 Maui’s dolphins were “recaptured” and through their DNA, 12 were identified as having been “tagged” in 2010. Based on these figures, estimate the population of Maui’s dolphins in 2011. [Source: Oremus, M., et al, “Distribution, group characteristics and movements of the critically endangered Maui’s Dolphin (Cephalorhynchus hectori maui).” Endangered Species Research, preprint.]
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Excursions in Modern Mathematics (9th Edition)
- 5. [10 marks] Determine whether the graph below has a perfect matching. Explain why your answer is correct. ข พarrow_forward(c) Utilize Fubini's Theorem to demonstrate that E(X)= = (1- F(x))dx.arrow_forward(c) Describe the positive and negative parts of a random variable. How is the integral defined for a general random variable using these components?arrow_forward
- Let k ≥ 1, and let G be a k-regular bipartite graph with bipartition X, Y . Prove that |X| is the minimum size of a vertex cover in G.arrow_forward3. [10 marks] Let Go = (V,E) and G₁ = (V,E₁) be two graphs on the same set of vertices. Let (V, EU E1), so that (u, v) is an edge of H if and only if (u, v) is an edge of Go or of G1 (or of both). H = (a) Show that if Go and G₁ are both Eulerian and En E₁ = Ø (i.e., Go and G₁ have no edges in common), then H is also Eulerian. (b) Give an example where Go and G₁ are both Eulerian, but H is not Eulerian.arrow_forward26. (a) Provide an example where X, X but E(X,) does not converge to E(X).arrow_forward
- (b) Demonstrate that if X and Y are independent, then it follows that E(XY) E(X)E(Y);arrow_forward(d) Under what conditions do we say that a random variable X is integrable, specifically when (i) X is a non-negative random variable and (ii) when X is a general random variable?arrow_forward29. State the Borel-Cantelli Lemmas without proof. What is the primary distinction between Lemma 1 and Lemma 2?arrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL