Geometry For Enjoyment And Challenge
Geometry For Enjoyment And Challenge
91st Edition
ISBN: 9780866099653
Author: Richard Rhoad, George Milauskas, Robert Whipple
Publisher: McDougal Littell
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13.7, Problem 24PSC

a

To determine

To find: The volume of the solid formed by rotating the triangle about OA.

a

Expert Solution
Check Mark

Answer to Problem 24PSC

The volume of the solid formed by rotating the triangle about OA is 402.1units .

Explanation of Solution

Given information:

The co-ordinates of the triangle are A(6,0),B(0,8),and O(0,0) .

If the triangle rotates about any side, then it form a cone.

The volume of the solid formed by rotating the triangle about OA is calculated as,

  V=13πr2h=13π(8)2(6)=402.1units

Thus, the volume of the solid formed by rotating the triangle about OA is 402.1units .

b

To determine

To find: The volume of the solid formed by rotating the triangle about OB.

b

Expert Solution
Check Mark

Answer to Problem 24PSC

The volume of the solid formed by rotating the triangle about OB is 301.6units .

Explanation of Solution

Given information:

The co-ordinates of the triangle are A(6,0),B(0,8),and O(0,0) .

If the triangle rotates about any side, then it forms a cone.

The volume of the solid formed by rotating the triangle about OB is calculated as,

  V=13πr2h=13π(6)2(8)=301.6units

Thus, the volume of the solid formed by rotating the triangle about OB is 301.6units .

c

To determine

To find: The volume and the total surface area of the solid formed by rotating the triangle about AB.

c

Expert Solution
Check Mark

Answer to Problem 24PSC

The volume and the total surface area of the solid formed by rotating the triangle about AB.

are 241.3units and 211.1units .

Explanation of Solution

Given information:

The co-ordinates of the triangle are A(6,0),B(0,8),and O(0,0) .

If the triangle rotates about any side, then it forms a cone.

The volume of the solid formed by rotating the triangle about AB is calculated as,

  V=13πr2h1+13πr2h2=13π(245)2(h1+h2)=13π(245)2(62+82)=241.3units

The total surface area of the solid formed by rotating the triangle about AB is calculated as,

  SA=πrl1+πrl2=π(245)(6+8)=211.1units

Thus, the volume and the total surface area of the solid formed by rotating the triangle about AB.

are 241.3units and 211.1units .

Chapter 13 Solutions

Geometry For Enjoyment And Challenge

Ch. 13.1 - Prob. 11PSACh. 13.1 - Prob. 12PSBCh. 13.1 - Prob. 13PSBCh. 13.1 - Prob. 14PSBCh. 13.1 - Prob. 15PSBCh. 13.1 - Prob. 16PSBCh. 13.1 - Prob. 17PSBCh. 13.1 - Prob. 18PSBCh. 13.1 - Prob. 19PSBCh. 13.1 - Prob. 20PSBCh. 13.1 - Prob. 21PSCCh. 13.1 - Prob. 22PSCCh. 13.1 - Prob. 23PSCCh. 13.1 - Prob. 24PSCCh. 13.2 - Prob. 1PSACh. 13.2 - Prob. 2PSACh. 13.2 - Prob. 3PSACh. 13.2 - Prob. 4PSACh. 13.2 - Prob. 5PSACh. 13.2 - Prob. 6PSACh. 13.2 - Prob. 7PSACh. 13.2 - Prob. 8PSACh. 13.2 - Prob. 9PSBCh. 13.2 - Prob. 10PSBCh. 13.2 - Prob. 11PSBCh. 13.2 - Prob. 12PSBCh. 13.2 - Prob. 13PSBCh. 13.2 - Prob. 14PSBCh. 13.2 - Prob. 15PSBCh. 13.2 - Prob. 16PSBCh. 13.2 - Prob. 17PSBCh. 13.2 - Prob. 18PSBCh. 13.2 - Prob. 19PSBCh. 13.2 - Prob. 20PSCCh. 13.2 - Prob. 21PSCCh. 13.2 - Prob. 22PSCCh. 13.2 - Prob. 23PSCCh. 13.2 - Prob. 24PSCCh. 13.2 - Prob. 25PSCCh. 13.2 - Prob. 26PSCCh. 13.2 - Prob. 27PSCCh. 13.3 - Prob. 1PSACh. 13.3 - Prob. 2PSACh. 13.3 - Prob. 3PSACh. 13.3 - Prob. 4PSACh. 13.3 - Prob. 5PSBCh. 13.3 - Prob. 6PSBCh. 13.3 - Prob. 7PSBCh. 13.3 - Prob. 8PSBCh. 13.3 - Prob. 9PSBCh. 13.3 - Prob. 10PSBCh. 13.3 - Prob. 11PSBCh. 13.3 - Prob. 12PSBCh. 13.3 - Prob. 13PSCCh. 13.3 - Prob. 14PSCCh. 13.3 - Prob. 15PSCCh. 13.3 - Prob. 16PSCCh. 13.3 - Prob. 17PSCCh. 13.3 - Prob. 18PSCCh. 13.4 - Prob. 1PSACh. 13.4 - Prob. 2PSACh. 13.4 - Prob. 3PSACh. 13.4 - Prob. 4PSBCh. 13.4 - Prob. 5PSBCh. 13.4 - Prob. 6PSBCh. 13.4 - Prob. 7PSCCh. 13.4 - Prob. 8PSCCh. 13.4 - Prob. 9PSCCh. 13.5 - Prob. 1PSACh. 13.5 - Prob. 2PSACh. 13.5 - Prob. 3PSACh. 13.5 - Prob. 4PSACh. 13.5 - Prob. 5PSACh. 13.5 - Prob. 6PSACh. 13.5 - Prob. 7PSACh. 13.5 - Prob. 8PSACh. 13.5 - Prob. 9PSBCh. 13.5 - Prob. 10PSBCh. 13.5 - Prob. 11PSBCh. 13.5 - Prob. 12PSBCh. 13.5 - Prob. 13PSBCh. 13.5 - Prob. 14PSCCh. 13.5 - Prob. 15PSCCh. 13.5 - Prob. 16PSCCh. 13.5 - Prob. 17PSCCh. 13.6 - Prob. 1PSACh. 13.6 - Prob. 2PSACh. 13.6 - Prob. 3PSACh. 13.6 - Prob. 4PSACh. 13.6 - Prob. 5PSACh. 13.6 - Prob. 6PSACh. 13.6 - Prob. 7PSACh. 13.6 - Prob. 8PSACh. 13.6 - Prob. 9PSACh. 13.6 - Prob. 10PSACh. 13.6 - Prob. 11PSBCh. 13.6 - Prob. 12PSBCh. 13.6 - Prob. 13PSBCh. 13.6 - Prob. 14PSBCh. 13.6 - Prob. 15PSBCh. 13.6 - Prob. 16PSCCh. 13.6 - Prob. 17PSCCh. 13.6 - Prob. 18PSCCh. 13.6 - Prob. 19PSCCh. 13.6 - Prob. 20PSDCh. 13.7 - Prob. 1PSACh. 13.7 - Prob. 2PSACh. 13.7 - Prob. 3PSACh. 13.7 - Prob. 4PSACh. 13.7 - Prob. 5PSACh. 13.7 - Prob. 6PSACh. 13.7 - Prob. 7PSACh. 13.7 - Prob. 8PSACh. 13.7 - Prob. 9PSACh. 13.7 - Prob. 10PSACh. 13.7 - Prob. 11PSACh. 13.7 - Prob. 12PSACh. 13.7 - Prob. 13PSBCh. 13.7 - Prob. 14PSBCh. 13.7 - Prob. 15PSBCh. 13.7 - Prob. 16PSBCh. 13.7 - Prob. 17PSBCh. 13.7 - Prob. 18PSBCh. 13.7 - Prob. 19PSBCh. 13.7 - Prob. 20PSBCh. 13.7 - Prob. 21PSCCh. 13.7 - Prob. 22PSCCh. 13.7 - Prob. 23PSCCh. 13.7 - Prob. 24PSCCh. 13.7 - Prob. 25PSCCh. 13.7 - Prob. 26PSCCh. 13.7 - Prob. 27PSDCh. 13.7 - Prob. 28PSDCh. 13.7 - Prob. 29PSDCh. 13 - Prob. 1RPCh. 13 - Prob. 2RPCh. 13 - Prob. 3RPCh. 13 - Prob. 4RPCh. 13 - Prob. 5RPCh. 13 - Prob. 6RPCh. 13 - Prob. 7RPCh. 13 - Prob. 8RPCh. 13 - Prob. 9RPCh. 13 - Prob. 10RPCh. 13 - Prob. 11RPCh. 13 - Prob. 12RPCh. 13 - Prob. 13RPCh. 13 - Prob. 14RPCh. 13 - Prob. 15RPCh. 13 - Prob. 16RPCh. 13 - Prob. 17RPCh. 13 - Prob. 18RPCh. 13 - Prob. 19RPCh. 13 - Prob. 20RPCh. 13 - Prob. 21RPCh. 13 - Prob. 22RPCh. 13 - Prob. 23RPCh. 13 - Prob. 24RPCh. 13 - Prob. 25RPCh. 13 - Prob. 26RPCh. 13 - Prob. 27RPCh. 13 - Prob. 28RPCh. 13 - Prob. 29RPCh. 13 - Prob. 30RPCh. 13 - Prob. 31RPCh. 13 - Prob. 32RPCh. 13 - Prob. 33RPCh. 13 - Prob. 34RPCh. 13 - Prob. 35RPCh. 13 - Prob. 36RPCh. 13 - Prob. 37RP
Knowledge Booster
Background pattern image
Geometry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, geometry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Text book image
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
Polynomials with Trigonometric Solutions (2 of 3: Substitute & solve); Author: Eddie Woo;https://www.youtube.com/watch?v=EnfhYp4o20w;License: Standard YouTube License, CC-BY
Quick Revision of Polynomials | Tricks to Solve Polynomials in Algebra | Maths Tricks | Letstute; Author: Let'stute;https://www.youtube.com/watch?v=YmDnGcol-gs;License: Standard YouTube License, CC-BY
Introduction to Polynomials; Author: Professor Dave Explains;https://www.youtube.com/watch?v=nPPNgin7W7Y;License: Standard Youtube License