Chemistry: The Central Science (13th Edition)
13th Edition
ISBN: 9780321910417
Author: Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, Catherine Murphy, Patrick Woodward, Matthew E. Stoltzfus
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.5, Problem 13.10.2PE
The concept of
a. If a system is at equilibrium, nothing is happening.
b. If a system is al equilibrium, the rate of the forward reaction is equal to the rate of the back reaction.
c. If a system is al equilibrium, the product concentration is changing over time [Section 4.1]
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use excel to plot the following titration data. Once you have done your plot, make sure to label the axes
correctly. Use your graph to determine the pK, for the weak acid. Attach your plot to the back of this
worksheet.
A 1.0M solution of weak acid was titrated with a base and the following data was collected.
Equivalents of Base
pH observed
0.05
3.4
0.15
3.9
0.25
4.2
0.40
4.5
0.60
4.9
0.75
5.2
0.85
5.4
0.95
6.0
1.
Write the dissociation reaction then calculate the pH for the following STRONG substances.
a. 2.5x103 M HBr
b.5.6x10 M NaOH
74. A contour map for an atomic orbital of hydrogen is
shown below for the xy and xz planes. Identify the
type (s, p, d, f, g . . .) of orbital.
axis
x axis
z axis
Cooo
xy plane
Chapter 13 Solutions
Chemistry: The Central Science (13th Edition)
Ch. 13.3 - The labels have fallen off three bottles...Ch. 13.3 - Explain how a redox reaction involves electrons in...Ch. 13.3 - Prob. 13.2.1PECh. 13.3 - Prob. 13.2.2PECh. 13.4 -
4.11 Which data set, of the two graphed here,...Ch. 13.4 - You are titrating an acidic solution with a basic...Ch. 13.4 - State whether each of the following statements is...Ch. 13.4 - State whether each of the following statements is...Ch. 13.4 -
4.15 We have learned in this chapter that many...Ch. 13.4 - Prob. 13.5.2PE
Ch. 13.4 -
4.17 Specify what ions are present in solution...Ch. 13.4 - Prob. 13.6.2PECh. 13.5 - Prob. 13.7.1PECh. 13.5 - Acetone. CH3COCH3, is a nonelectrolyte;...Ch. 13.5 -
4.21 Using solubility guidelines, predict whether...Ch. 13.5 - Prob. 13.8.2PECh. 13.5 - Prob. 13.9.1PECh. 13.5 - Prob. 13.9.2PECh. 13.5 -
4 3 Use the molecular representations shown here...Ch. 13.5 - The concept of chemical equilibrium is very...Ch. 13.5 -
4 5 You are presented with a white solid and told...Ch. 13.5 - Which of the following ions will always be a...Ch. 13 - Which element is oxidized, and which is reduced in...Ch. 13 - Which of the following are redox reactions? For...Ch. 13 - Prob. 2ECh. 13 - Prob. 3ECh. 13 - Prob. 4ECh. 13 - Prob. 5ECh. 13 - The solubility of Xe in water at 1 atm pressure...Ch. 13 - The coinage metals (Group 1B) copper, silver, and...Ch. 13 - Prob. 8ECh. 13 - The contents of the closed box in each of the...Ch. 13 - An aqueous solution of an unknown solute is tested...Ch. 13 -
4.42 Because the oxide ion is basic, metal oxides...Ch. 13 - Prob. 12ECh. 13 -
4.44 As K20 dissolves in water, the oxide ion...Ch. 13 - True or false: If a substance is oxidized, it is...Ch. 13 - Prob. 15ECh. 13 - Which region of the periodic table shown here...Ch. 13 - Determine the oxidation number of sulfur in each...Ch. 13 - Determine the oxidation number for the indicated...Ch. 13 - Determine the oxidation number for the indicated...Ch. 13 - Write balanced molecular and net ionic equations...Ch. 13 - Using the activity series (Table 4.5), write...Ch. 13 - The enthalpy of solution of KBr in water is about...Ch. 13 - Prob. 23ECh. 13 -
4.58 The following reactions (note that the...Ch. 13 - Is the concentration of a solution an intensive or...Ch. 13 - Prob. 26ECh. 13 - Calculate the molarity of a solution that contains...Ch. 13 -
4.62
Calculate the molarity of a solution made by...Ch. 13 - Prob. 29ECh. 13 -
4.66 The average adult male has a total blood...Ch. 13 -
4.67
How many grams of ethanol, CH2CH2OH should...Ch. 13 - Prob. 32ECh. 13 - Which will have the highest concentration of...Ch. 13 - Prob. 34ECh. 13 - Prob. 35ECh. 13 - 13.36 Explain why pressure substantially affects...Ch. 13 - Prob. 37ECh. 13 - Prob. 38ECh. 13 - Prob. 39ECh. 13 - Prob. 40ECh. 13 - Prob. 41ECh. 13 - Prob. 42ECh. 13 - Prob. 43ECh. 13 - Prob. 44ECh. 13 - Some sulfuric acid is spilled on a lab bench You...Ch. 13 -
4.84 The distinctive odor of vinegar is due to...Ch. 13 - A 4.36-g sample of an unknown alkali metal...Ch. 13 -
4.86 An 8.65-g sample of an unknown group 2A...Ch. 13 - A solution of 100.0 mL of 0.200 M KOH is mixed...Ch. 13 - A 1.248-9 sample of limestone rock is pulverized...Ch. 13 - 4.91 Uranium hexafluoride, UF6, is processed to...Ch. 13 - The accompanying photo shows the reaction between...Ch. 13 - Prob. 53ECh. 13 -
4.94 You choose to investigate some of the...Ch. 13 -
4 95 Antacids are often used to relieve pain and...Ch. 13 -
4 96 The commercial production of nitric acid...Ch. 13 - Consider the following reagents: zinc, copper,...Ch. 13 - 98 Bronze is a solid solution of Cu(s) and Sn(s);...Ch. 13 - Prob. 59ECh. 13 - Tartaric acid. H2C4H4O6, has two acidic hydrogens....Ch. 13 - Prob. 61ECh. 13 - A solid sample of Zn(OH)2 is added to 0.350 L of...Ch. 13 - Prob. 63ECh. 13 - Prob. 64ECh. 13 - Prob. 65ECh. 13 - A fertilizer railroad car carrying 34,300 gallons...Ch. 13 - Prob. 67ECh. 13 - Prob. 68ECh. 13 - Prob. 69ECh. 13 - Prob. 70ECh. 13 -
4.115 Federal regulations set an upper limit of...Ch. 13 - A mixture of gases A2 and B2 are introduced to a...Ch. 13 - Practice Exercise 2 Calculate the change in the...Ch. 13 - A solid sample of Zn(OH)2 is added to 0.350 L of...Ch. 13 -
Practice Exercise 2
Calculate the work, in J, if...Ch. 13 - Practice Exercise 1 A chemical reaction that gives...Ch. 13 - Prob. 77ECh. 13 - Prob. 78ECh. 13 - Prob. 79ECh. 13 - Practice Exercise 1 When 0.243 g of Mg metal is...Ch. 13 - Practical exercise 2 When 50.0 mL of 0.100MAgNO3...Ch. 13 - Prob. 82ECh. 13 - Prob. 83ECh. 13 - Prob. 84ECh. 13 - Prob. 85ECh. 13 - Calculate H for the reaction C(s)+...Ch. 13 - Prob. 87ECh. 13 - Prob. 88ECh. 13 - Prob. 89ECh. 13 - Prob. 90ECh. 13 - Prob. 91AECh. 13 - Prob. 92AECh. 13 -
Use the average bond enthalpies in Table 5.4 to...Ch. 13 - Prob. 94AECh. 13 - Prob. 95AECh. 13 - One of the important ideas of thermodynamics is...Ch. 13 - Two positively charged spheres, each with a charge...Ch. 13 - SI The accompanying photo shows a pipevine...Ch. 13 - Consider the accompanying energy diagram. Does...Ch. 13 - Write balanced net ionic equations for the...Ch. 13 -
4.27 Separate samples of a solution of an unknown...Ch. 13 - Prob. 102AECh. 13 - Prob. 103AECh. 13 - Prob. 104AECh. 13 - Prob. 105AECh. 13 - Prob. 106IECh. 13 - State whether each of the following statements is...Ch. 13 - State whether each of the following statements is...Ch. 13 - A textbook on chemical thermodynamics states, “The...Ch. 13 - Prob. 110IECh. 13 - Prob. 111IECh. 13 - Complete and balance the following molecular...Ch. 13 -
[13.113]At 35°C the vapor pressure of acetone,...Ch. 13 - Write balanced molecular and net ionic equations...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A buffer is prepared by adding 0.50 mol of acetic acid (HC2H3O2) and 0.75 mol of sodium acetate (NaC2H3O2) to enough water to form 2.00L solution. (pKa for acetic acid is 4.74) Calculate the pH of the buffer.arrow_forwardModify the given carbon skeleton to draw the major product of the following reaction. If a racemic mixture of enantiomers is expected, draw both enantiomers. Note: you can select a structure and use Copy and Paste to save drawing time. HBr کی CH3 کی Edit Drawingarrow_forwardSort the following into the classification for a reaction that is NOT at equilibrium versus a reaction system that has reached equilibrium. Drag the appropriate items to their respective bins. View Available Hint(s) The forward and reverse reactions proceed at the same rate. Chemical equilibrium is a dynamic state. The ratio of products to reactants is not stable. Reset Help The state of chemical equilibrium will remain the same unless reactants or products escape or are introduced into the system. This will disturb the equilibrium. The concentration of products is increasing, and the concentration of reactants is decreasing. The ratio of products to reactants does not change. The rate at which products form from reactants is equal to the rate at which reactants form from products. The concentrations of reactants and products are stable and cease to change. The reaction has reached equilibrium. The rate of the forward reaction is greater than the rate of the reverse reaction. The…arrow_forward
- Place the following characteristics into the box for the correct ion. Note that some of the characteristics will not be placed in either bin. Use your periodic table for assistance. Link to Periodic Table Drag the characteristics to their respective bins. ▸ View Available Hint(s) This anion could form a neutral compound by forming an ionic bond with one Ca²+. Reset Help This ion forms ionic bonds with nonmetals. This ion has a 1- charge. This is a polyatomic ion. The neutral atom from which this ion is formed is a metal. The atom from which this ion is formed gains an electron to become an ion. The atom from which this ion is formed loses an electron to become an ion. This ion has a total of 18 electrons. This ion has a total of 36 electrons. This ion has covalent bonds and a net 2- charge. This ion has a 1+ charge. Potassium ion Bromide ion Sulfate ionarrow_forwardU Consider the following graph containing line plots for the moles of Product 1 versus time (minutes) and the moles of Product 2 versus time in minutes. Choose all of the key terms/phrases that describe the plots on this graph. Check all that apply. ▸ View Available Hint(s) Slope is zero. More of Product 1 is obtained in 12 minutes. Slope has units of moles per minute. plot of minutes versus moles positive relationship between moles and minutes negative relationship between moles and minutes Slope has units of minutes per moles. More of Product 2 is obtained in 12 minutes. can be described using equation y = mx + b plot of moles versus minutes y-intercept is at (12,10). y-intercept is at the origin. Product Amount (moles) Product 1 B (12,10) Product 2 E 1 Time (minutes) A (12,5)arrow_forwardSolve for x, where M is molar and s is seconds. x = (9.0 × 10³ M−². s¯¹) (0.26 M)³ Enter the answer. Include units. Use the exponent key above the answer box to indicate any exponent on your units. ▸ View Available Hint(s) ΜΑ 0 ? Units Valuearrow_forward
- Learning Goal: This question reviews the format for writing an element's written symbol. Recall that written symbols have a particular format. Written symbols use a form like this: 35 Cl 17 In this form the mass number, 35, is a stacked superscript. The atomic number, 17, is a stacked subscript. "CI" is the chemical symbol for the element chlorine. A general way to show this form is: It is also correct to write symbols by leaving off the atomic number, as in the following form: atomic number mass number Symbol 35 Cl or mass number Symbol This is because if you write the element symbol, such as Cl, you know the atomic number is 17 from that symbol. Remember that the atomic number, or number of protons in the nucleus, is what defines the element. Thus, if 17 protons are in the nucleus, the element can only be chlorine. Sometimes you will only see 35 C1, where the atomic number is not written. Watch this video to review the format for written symbols. In the following table each column…arrow_forwardneed help please and thanks dont understand only need help with C-F Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7). Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%. Part B - Compare difference in free energy to the thermal…arrow_forwardneed help please and thanks dont understand only need help with C-F Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7). Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%. Part B - Compare difference in free energy to the thermal…arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardneed help please and thanks dont understand a-b Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7). Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%. Part B - Compare difference in free energy to the thermal energy Divide the…arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Precipitation Reactions: Crash Course Chemistry #9; Author: Crash Course;https://www.youtube.com/watch?v=IIu16dy3ThI;License: Standard YouTube License, CC-BY