Introductory Chemistry: A Foundation
8th Edition
ISBN: 9781285199030
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13.4, Problem 13.4SC
Interpretation Introduction
Interpretation:
The number of moles of nitrogen in Sample 2 should be determined.
Concept Introduction:
The number of moles of nitrogen in Sample 2 in this case can be determined using
PV = nRT
Where,
P is the pressure of gas
V is the volume of the gas
T is the absolute temperature of the gas
R is the gas constant and
n is the number of moles of the gas molecules.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Introductory Chemistry: A Foundation
Ch. 13.1 - Prob. 13.1SCCh. 13.2 - Prob. 13.2SCCh. 13.3 - Prob. 1CTCh. 13.3 - trong>Exercise 13.3 A child blows a bubble that...Ch. 13.4 - Prob. 13.4SCCh. 13.5 - trong>Exercise 13.5 A weather balloon contains...Ch. 13.5 - Prob. 13.6SCCh. 13.5 - Prob. 13.7SCCh. 13.5 - trong>Exercise 13.8 A sample of argon gas with a...Ch. 13.6 - Prob. 13.9SC
Ch. 13.6 - Prob. 13.10SCCh. 13.8 - Prob. 1CTCh. 13.10 - trong>Exercise 13.11 Calculate the volume of...Ch. 13.10 - at if STP was defined as normal room temperature...Ch. 13.10 - Prob. 13.12SCCh. 13 - Prob. 1ALQCh. 13 - Prob. 2ALQCh. 13 - Prob. 3ALQCh. 13 - Prob. 4ALQCh. 13 - Prob. 5ALQCh. 13 - Prob. 6ALQCh. 13 - Prob. 7ALQCh. 13 - Prob. 8ALQCh. 13 - Prob. 9ALQCh. 13 - Prob. 10ALQCh. 13 - Prob. 11ALQCh. 13 - Prob. 12ALQCh. 13 - Prob. 13ALQCh. 13 - Draw molecular—level views than show the...Ch. 13 - Prob. 15ALQCh. 13 - Prob. 16ALQCh. 13 - Prob. 17ALQCh. 13 - Prob. 18ALQCh. 13 - Prob. 19ALQCh. 13 - Prob. 20ALQCh. 13 - You are holding two balloons of the same volume....Ch. 13 - Prob. 22ALQCh. 13 - Prob. 23ALQCh. 13 - The introduction to this chapter says that "we...Ch. 13 - Prob. 2QAPCh. 13 - Prob. 3QAPCh. 13 - Prob. 4QAPCh. 13 - Prob. 5QAPCh. 13 - Prob. 6QAPCh. 13 - Prob. 7QAPCh. 13 - Prob. 8QAPCh. 13 - Prob. 9QAPCh. 13 - Prob. 10QAPCh. 13 - Make the indicated pressure conversions....Ch. 13 - Prob. 12QAPCh. 13 - Prob. 13QAPCh. 13 - Prob. 14QAPCh. 13 - Prob. 15QAPCh. 13 - Prob. 16QAPCh. 13 - Prob. 17QAPCh. 13 - Prob. 18QAPCh. 13 - Prob. 19QAPCh. 13 - Prob. 20QAPCh. 13 - Prob. 21QAPCh. 13 - Prob. 22QAPCh. 13 - 3. A sample of helium gas with a volume of...Ch. 13 - Prob. 24QAPCh. 13 - Prob. 25QAPCh. 13 - Prob. 26QAPCh. 13 - Prob. 27QAPCh. 13 - Prob. 28QAPCh. 13 - A sample of gas in a balloon has an initial...Ch. 13 - Suppose a 375mLsample of neon gas at 78Cis cooled...Ch. 13 - For each of the following sets of...Ch. 13 - For each of the following sets of...Ch. 13 - Prob. 33QAPCh. 13 - Prob. 34QAPCh. 13 - Suppose 1.25Lof argon is cooled from 291Kto 78K....Ch. 13 - Suppose a 125mLsample of argon is cooled from...Ch. 13 - Prob. 37QAPCh. 13 - Prob. 38QAPCh. 13 - Prob. 39QAPCh. 13 - Prob. 40QAPCh. 13 - Prob. 41QAPCh. 13 - If :math>1.04gof chlorine gas occupies a volume of...Ch. 13 - If 3.25moles of argon gas occupies a volume of...Ch. 13 - Prob. 44QAPCh. 13 - Prob. 45QAPCh. 13 - Prob. 46QAPCh. 13 - Prob. 47QAPCh. 13 - Prob. 48QAPCh. 13 - Prob. 49QAPCh. 13 - Prob. 50QAPCh. 13 - Prob. 51QAPCh. 13 - Determine the pressure in a 125Ltank containing...Ch. 13 - Prob. 53QAPCh. 13 - Prob. 54QAPCh. 13 - Prob. 55QAPCh. 13 - Suppose that a 1.25gsample of neon gas is confined...Ch. 13 - At what temperature will a 1.0gsample of neon gas...Ch. 13 - Prob. 58QAPCh. 13 - What pressure exists in a 200Ltank containing...Ch. 13 - Prob. 60QAPCh. 13 - Suppose a 24.3mLsample of helium gas at 25Cand...Ch. 13 - Prob. 62QAPCh. 13 - Prob. 63QAPCh. 13 - Prob. 64QAPCh. 13 - Prob. 65QAPCh. 13 - Prob. 66QAPCh. 13 - Prob. 67QAPCh. 13 - Suppose than 1.28gof neon gas and 2.49gof argon...Ch. 13 - A tank contains a mixture of 52.5gof oxygen gas...Ch. 13 - What mass of new gas would but required to fill a...Ch. 13 - Prob. 71QAPCh. 13 - Prob. 72QAPCh. 13 - A 500mLsample of O2gas at 24Cwas prepared by...Ch. 13 - Prob. 74QAPCh. 13 - Prob. 75QAPCh. 13 - Prob. 76QAPCh. 13 - Prob. 77QAPCh. 13 - Prob. 78QAPCh. 13 - Prob. 79QAPCh. 13 - Prob. 80QAPCh. 13 - Prob. 81QAPCh. 13 - Prob. 82QAPCh. 13 - Prob. 83QAPCh. 13 - Prob. 84QAPCh. 13 - Calcium oxide can be used to “scrub" carbon...Ch. 13 - Consider the following reaction:...Ch. 13 - Consider the following reaction for the combustion...Ch. 13 - Although we: generally think of combustion...Ch. 13 - m>89. Ammonia and gaseous hydrogen chloride...Ch. 13 - Calcium carbide, CaC2, reacts with water to...Ch. 13 - Prob. 91QAPCh. 13 - Prob. 92QAPCh. 13 - What volume does a mixture of 14.2gof He and...Ch. 13 - Prob. 94QAPCh. 13 - Prob. 95QAPCh. 13 - The volume of a gas-filled balloon is 50.0 L at...Ch. 13 - Prob. 97QAPCh. 13 - Prob. 98QAPCh. 13 - Consider the following unbalanced chemical...Ch. 13 - Prob. 100QAPCh. 13 - Prob. 101QAPCh. 13 - Prob. 102QAPCh. 13 - Prob. 103APCh. 13 - Prob. 104APCh. 13 - Prob. 105APCh. 13 - onsider the flasks in the following diagrams. mg...Ch. 13 - Prob. 107APCh. 13 - helium tank contains 25.2Lof helium m 8.40atm...Ch. 13 - Prob. 109APCh. 13 - Prob. 110APCh. 13 - Prob. 111APCh. 13 - Prob. 112APCh. 13 - Prob. 113APCh. 13 - Prob. 114APCh. 13 - Prob. 115APCh. 13 - Prob. 116APCh. 13 - Prob. 117APCh. 13 - Prob. 118APCh. 13 - Prob. 119APCh. 13 - Prob. 120APCh. 13 - Prob. 121APCh. 13 - Prob. 122APCh. 13 - Prob. 123APCh. 13 - Prob. 124APCh. 13 - Prob. 125APCh. 13 - Prob. 126APCh. 13 - f 5.l2gof oxygen gas occupies a volume of 6.21Lat...Ch. 13 - Prob. 128APCh. 13 - Prob. 129APCh. 13 - Prob. 130APCh. 13 - Prob. 131APCh. 13 - Suppose three 100.-L tanks are to be filled...Ch. 13 - t what temperature does 4.00gof helium gas have a...Ch. 13 - Prob. 134APCh. 13 - f 3.20gof nitrogen gas occupies a volume of...Ch. 13 - Prob. 136APCh. 13 - Prob. 137APCh. 13 - A mixture at 33 °C contains H2at 325 torr. N;at...Ch. 13 - Prob. 139APCh. 13 - Prob. 140APCh. 13 - Consider the following unbalanced chemical...Ch. 13 - Consider the following unbalanced chemical...Ch. 13 - Prob. 143APCh. 13 - Prob. 144APCh. 13 - Prob. 145APCh. 13 - Prob. 146APCh. 13 - Prob. 147APCh. 13 - Prob. 148APCh. 13 - Prob. 149APCh. 13 - Prob. 150APCh. 13 - omplete the following table for an ideal gas. mg...Ch. 13 - Prob. 152CPCh. 13 - Prob. 153CPCh. 13 - certain flexible weather balloon contains helium...Ch. 13 - Prob. 155CPCh. 13 - Prob. 156CPCh. 13 - Prob. 157CPCh. 13 - Prob. 158CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider the following sketch. Each square in bulb A represents a mole of atoms X. Each circle in bulb B represents a mole of atoms Y. The bulbs have the same volume, and the temperature is kept constant. When the valve is opened, atoms of X react with atoms of Y according to the following equation: 2X(g)+Y(g)X2Y(g)The gaseous product is represented as and each represents one mole of product. (a) IfP A=2.0 atm, what is P8 before the valve is opened and the reaction is allowed to occur? What is P A+P B? (b) Redraw the sketch to represent what happens after the valve is opened. (c) What is PA? What is PB? What is P A+P B? Compare your answer with the answer in part (a).arrow_forwardIn the Mthode Champenoise, grape juice is fermented in a wine bottle to produce sparkling wine. The reaction is C6H12O6(aq)2C2H5OH(aq)+2CO2(g) Fermentation of 750. mL grape juice (density = 1.0 g/cm3) is allowed to take place in a bottle with a total volume of 825 mL until 12% by volume is ethanol (C2H5OH). Assuming that the CO2 is insoluble in H2O (actually, a wrong assumption), what would be the pressure of CO2 inside the wine bottle at 25C? (The density of ethanol is 0.79 g/cm3.)arrow_forwardWhich of the following statements is(are) true? a. If the number of moles of a gas is doubled, the volume will double, assuming the pressure and temperature of the gas remain constant. b. If the temperature of a gas increases from 25C to 50C, the volume of the gas would double, assuming that the pressure and the number of moles of gas remain constant. c. The device that measures atmospheric pressure is called a barometer. d. If the volume of a gas decreases by one half, then the pressure would double, assuming that the number of moles and the temperature of the gas remain constant.arrow_forward
- How would the graph in Figure 9.12 change if the number of moles of gas in the sample used to determine the curve were doubled?arrow_forwardGroup 2A metal carbonates are decomposed to the metal oxide and CO2 on heating: MCO3(s) MO(s) + CO2(g) You heat 0.158 g of a white, solid carbonate of a Group 2A metal (M) and find that the evolved CO2 has a pressure of 69.8 mm Hg in a 285-mL flask at 25 C. Identify M.arrow_forward5-111 Diving, particularly SCUBA (Self-Contained Underwater Breathing Apparatus) diving, subjects the body to increased pressure. Each 10. m (approximately 33 ft) of water exerts an additional pressure of 1 atm on the body. (a) What is the pressure on the body at a depth of 100. ft? (b) The partial pressure of nitrogen gas in air at 1 atm is 593 mm Hg. Assuming a SCUBA diver breathes compressed air, what is the partial pressure of nitrogen entering the lungs from a breathing tank at a depth of 100. ft? (c) The partial pressure of oxygen gas in the air at 2 atm is 158 mm Hg. What is the partial pressure of oxygen in the air in the lungs at a depth of 100. ft? (d) Why is it absolutely essential to exhale vigorously in a rapid ascent from a depth of 100. ft?arrow_forward
- If equal masses of O2 and N2 are placed in separate containers of equal volume at the same temperature, which of the following statements is true? If false, explain why it is false. (a) The pressure in the flask containing N2 is greater than that in the flask containing O2. (b) There are more molecules in the flask containing O2 than in the flask containing N2.arrow_forwardA person exhales about 5.8 102 L of carbon dioxide per day (at STP). The carbon dioxide exhaled by an astronaut is absorbed from the air of a space capsule by reaction with lithium hydroxide, LiOH. 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) How many grams of lithium hydroxide are required per astronaut per day?arrow_forwardMany nitrate salts can be decomposed by heating. For example, blue, anhydrous copper(II) nitrate produces the gases nitrogen dioxide and oxygen when heated. In the laboratory, you find that a sample of this salt produced a 0.195-g mixture of gaseous NO2 and O2 with a total pressure of 725 mm Hg at 35 C in a 125-mL flask (and black, solid CuO was left as a residue). What is the average molar mass of the gas mixture? What are the mole fractions of NO2 and O2 in the mixture? What amount of each gas b in the mixture? Do these amounts reflect the relative amounts of NO2 and O2 expected based on the balanced equation? Is it possible that the fact that some NO2 molecules combine to give N2O4 plays a role? Heating copper(II) nitrate produces nitrogen dioxide and oxygen gas and leaves a residue of copper(ll) oxide.arrow_forward
- A halothane-oxygen mixture (C2HBrCIF3 + O2) can be used as an anesthetic. A tank containing such a mixture has the following partial pressures: P (halothane) = 170 mm Hg and P (O2) = 570 mm Hg. (a) What is the ratio of the number of moles of halothane to the number of moles of O2? (b) If the tank contains 160 g of O2, what mass of C2HBrCIF3 is present?arrow_forward5-114 Carbon dioxide gas, saturated with water vapor, can be produced by the addition of aqueous acid to calcium carbonate based on the following balanced net ionic equation: (a) How many moles of wet CO (g), collected at 60.°C and 774 torr total pressure, are produced by the complete reaction of 10.0 g of CaCO3 with excess acid? (b) What volume does this wet CO2 occupy? (c) What volume would the CO2 occupy at 774 torr if a desiccant (a chemical drying agent) were added to remove the water? The vapor pressure of water at 60.°C is 149.4 mm Hg.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning