Concept explainers
Interpretation:
The affect on the density of the gas should be determined when the temperature of gas in a sealed, rigid container increases.
Whether the results will be the same when the same experiment in a container with a movable piston at a constant external pressure takes place should be explained.
Concept introduction:
The results can be explained using the
The ideal gas equation:
PV = nRT
Where, V is the volume of the gas.
P is the pressure of the gas.
n is the number of moles of the gas.
R is the gas constant.
and T is the temperature.
Answer to Problem 1ALQ
In first experiment density of the gas will remain the same
In the second experiment density of the gas will decrease.
Explanation of Solution
The ideal gas equation
PV = nRT
or n/V = P/RT
Or, P/RT = d (where d is the density of the gas)
An increase in temperature will normally cause an increase in the volume. However, because the gas is enclosed in a rigid container the volume of the container cannot increase. Therefore, due to the increase in temperature, molecular momentum of air molecules also increases which further results in increase in the pressure inside container. Now, the density of a gas is the ratio of mass to its volume. If neither the mass nor the volume change as the can is heated, there will be no change in the density of the gas.
When the gas is heated in a container with a movable piston, the volume of the gas will also increase. Now, density is defined as d = m/V. Therefore, an increase in the volume will cause a decrease in the density of the gas.
Therefore, based on the ideal gas equation, when the gas is heated in a sealed container the density of the gas will remain constant.
However, when the gas is heated in a container with a movable piston, the density of the gas will decrease.
Want to see more full solutions like this?
Chapter 13 Solutions
Introductory Chemistry: A Foundation
- Nonearrow_forwardJON Determine the bund energy for UCI (in kJ/mol Hcl) using me balanced chemical equation and bund energies listed? का (My (9) +36/2(g)-(((3(g) + 3(g) A Hryn = -330. KJ bond energy и-н 432 bond bond C-1413 C=C 839 N-H 391 C=O 1010 S-H 363 б-н 467 02 498 N-N 160 N=N 243 418 C-C 341 C-0 358 C=C C-C 339 N-Br 243 Br-Br C-Br 274 193 614 (-1 214||(=olin (02) 799 C=N 615 AALarrow_forwardDetermine the bond energy for HCI ( in kJ/mol HCI) using he balanced cremiculequecticnand bund energles listed? also c double bond to N is 615, read numbets carefully please!!!! Determine the bund energy for UCI (in kJ/mol cl) using me balanced chemical equation and bund energies listed? 51 (My (9) +312(g)-73(g) + 3(g) =-330. KJ спод bond energy Hryn H-H bond band 432 C-1 413 C=C 839 NH 391 C=O 1010 S-1 343 6-H 02 498 N-N 160 467 N=N C-C 341 CL- 243 418 339 N-Br 243 C-O 358 Br-Br C=C C-Br 274 193 614 (-1 216 (=olin (02) 799 C=N 618arrow_forward
- Differentiate between single links and multicenter links.arrow_forwardI need help on my practice final, if you could explain how to solve this that would be extremely helpful for my final thursday. Please dumb it down chemistry is not my strong suit. If you could offer strategies as well to make my life easier that would be beneficialarrow_forwardNonearrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning