Concept explainers
Interpretation:
The volume of the mixture of gas at STP and partial pressure of each gas in the mixture at STP should be calculated.
Concept Introduction:
According to ideal gas equation:
Here, P is pressure, V is volume, n is number of moles, R is Universal gas constant and T is temperature.
The value of Universal gas constant can be taken as
Mass of gas can be calculated from number of moles and molar mass as follows:
Here, n is number of moles, m is mass and M is molar mass.
Answer to Problem 97QAP
15.65 L,
Explanation of Solution
Given Information:
The mass of oxygen gas, nitrogen gas, carbon dioxide gas and neon gas is 5 g.
First calculate the number of moles of each gas as follows:
Molar mass of oxygen gas is 32 g/mol thus, number of moles will be:
Molar mass of nitrogen gas is 28 g/mol thus,
Molar mass of carbon dioxide is 44.01 g/mol thus,
Molar mass of neon gas is 20.18 g/mol thus,
Number of moles of mixture can be calculated as follows:
Putting the values,
At STP, the value of temperature is 273.15 K and pressure is 1 atm thus, volume can be calculated using the ideal gas equation as follows:
Putting the values,
Therefore, volume mixture of gases is
Partial pressure of each gas at STP can be calculated considering the number of moles of individual gases using the ideal gas equation:
Thus, partial pressure of oxygen gas can be calculated as follows:
Partial pressure of nitrogen gas can be calculated as follows:
Partial pressure of carbon dioxide gas can be calculated as follows:
Partial pressure of neon gas can be calculated as follows:
Therefore, volume of mixture of gases is 15.65 L, partial pressure of oxygen, nitrogen, carbon dioxide and neon gas is 0.2237 atm, 0.2556 atm, 0.1626 atm and 0.3578 atm respectively.
Want to see more full solutions like this?
Chapter 13 Solutions
Introductory Chemistry: A Foundation
- Aiter running various experiments, you determine that the mechanism for the following reaction is bimolecular. CI Using this information, draw the correct mechanism in the space below. X Explanation Check C Cl OH + CI Add/Remove step Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Carrow_forwardComplete the reaction in the fewest number of steps as possible, Draw all intermediates (In the same form as the picture provided) and provide all reagents.arrow_forwardPlease provide steps to work for complete understanding.arrow_forward
- Please provide steps to work for complete understanding.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forward
- Identify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardA certain chemical reaction releases 24.7 kJ/g of heat for each gram of reactant consumed. How can you calculate what mass of reactant will produce 1460. J of heat? Set the math up. But don't do any of it. Just leave your answer as a math expression. Also, be sure your answer includes all the correct unit symbols. mass M 0.0 x μ 00 1 Garrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning