Concept explainers
A piston–cylinder device contains 6 kg of H2 and 21 kg of N2 at 160 K and 5 MPa. Heat is now transferred to the device, and the mixture expands at constant pressure until the temperature rises to 200 K. Determine the heat transfer during this process by treating the mixture (a) as an ideal gas and (b) as a nonideal gas and using Amagat’s law.
a)
The heat transfer during the process by treating as an ideal gas.
Answer to Problem 72P
The heat transfer during the process as an ideal gas is
Explanation of Solution
Write a closed system energy balance for the gas mixture.
Here, input energy is
Write the expression to obtain the mole number of
Here, molar mass of
Write the expression to obtain the mole number of
Conclusion:
Refer Table A-1, “Molar mass, gas constant, and critical point properties”, obtain the molar masses of
Substitute
Substitute
From the Table of ideal gas for
Substitute
Thus, the heat transfer during the process as an ideal gas is
b)
The heat transfer during the process by treating as non-ideal gas.
Answer to Problem 72P
The heat transfer during the process by treating as non-ideal gas is
Explanation of Solution
Write the expression to obtain the initial reduced temperature of
Here, critical temperature of
Write the expression to obtain the initial and final reduced pressure of
Here, critical temperature of
Write the expression to obtain the final reduced temperature of
Here, critical temperature of
Write the expression to obtain the initial reduced temperature of
Here, critical temperature of
Write the expression to obtain the initial and final reduced pressure of
Here, critical temperature of
Write the expression to obtain the final reduced temperature of
Here, critical temperature of
Consider hydrogen as ideal gas
Write the expression for molar enthalpy difference of hydrogen
Write the expression for molar enthalpy difference of nitrogen.
Conclusion:
Substitute 160 K for
Substitute 5 MPa for
Substitute 200 K for
Refer Figure A-30, “Generalized entropy departure chart”, obtain the value of
Substitute 160 K for
Substitute 5 MPa for
Substitute 200 K for
Refer Figure A-30, “Generalized entropy departure chart”, obtain the value of
Substitute
Substitute
Substitute
Thus, the heat transfer during the process by treating as non-ideal gas is
Want to see more full solutions like this?
Chapter 13 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
- Argon gas is contained in a cylinder fitted with a frictionless piston. Initially, the cylinder contains 200 L of Argon at 140 kPa and 10o C. The gas is then compressed in a polytropic process according to the relationship Pvn = C until the final pressure and temperature are 700 kPa and 180o C respectively. For Argon; R = 0.2081 kJ/kg.K and cv = 0.3122 kJ/kg.K. i) Sketch the system and the details of the process. ii) Show the process on a P-v diagram iii) Determine the polytropic exponent, n iv) Calculate the work involved during the process [kJ] v) Calculate the heat transfer during this process [kJ]arrow_forwardThe tank contains 2kg of water at 20C, 1 atm. The tank is heated. When the tank pressure reaches 300kpa, the valve opens and steam starts escaping. Heating continues and steam continues to escape while the pressure remains constant until half of the mass escapes. At this time the tank is filled with saturated vapor at 300 kpa, and the valve closes. Question: Determine the volume of the tank and the amount of supplied heat.arrow_forwarduestion 4: (a) An 88-litre gas cylinder is filled with propane gas at a pressure of 1.15 MPa and 18°C. The propane is used to fuel a gas burner. After some time, the pressure and temperature are 210 kPa and 23°C respectively. Determine the mass of propane used. The molar mass of propane is 44 g/mole. (b) A piston-cylinder device filled with air at 365 kPa and 12°C, has an initial volume of 1.3 litres. The air is expanded at constant pressure to a volume of 3.6 litres and 516°C. Determine the amount of heat and work involved in this process and state whether the heat and work are into, or out of the gas.arrow_forward
- A rigid 10-L vessel initially contains a mixture of liquid water and vapor at 100°C with 12.3 percent quality. The mixture is then heated until its temperature is 150°C. Calculate the heat transfer required for this process.arrow_forwardA mixture of 5 kg of Hydrogen and 26 kg of Nitrogen are contained in a piston cylinder assembly at a pressure of 6.78 MPa and a temperature of 125 K. heat is transferred to the device and the mixture expands at a constant pressure until the temperature rises to 135 K. Determine the heat transfer in kJ during the process by treating the mixture as a non-ideal gas and using the Amagat's law.arrow_forwardA 2.170-kg steam-water mixture at 1.0 MPa is contained in an inflexible tank. Heat is added until the pressure rises to 3.5 MPa and the temperature to 400°C. Determine the heat added in kJ. Use steam tables of Keenan et alarrow_forward
- (a) Using the Beattie-Bridgeman equation, determine the final pressure of carbon dioxide when it is heated in a rigid tank from 50 kPa and 20°C to 200°C. (b) You have 5 kg of steam in a 0.8 m rigid tank at a pressure of 4 MPa. Determine the temperature of the steam using the ideal gas equation and the van der Waals equation (c) As part of an experiment, you filled a weighted piston-cylinder device as shown in Figure 2 with 10 kg of Refrigerant-134a. At this stage, the volume occupied by the refrigerant is 0.8 m?. The pressure gauge now indicates that the pressure of the refrigerant to be 240 KPa. You then applied heat to the bottom of the piston-cylinder device until the temperature reached 30°C. Calculate the initial temperature and the change in volumes of the R-134a due to the heating process. R-134a Figure 2: Piston-cylinder devicearrow_forwardA rigid tank contains 10kg pure water vapor at 300°C and 10 bar. The tank is now cooled down to 100°C. Determine the mass of liquid water in the tankarrow_forwardA piston-cylinder assembly contains a two-phase liquid-vapor mixture of water with an initial dryness fraction of 50%. The mass of the piston is 15 kg with a diameter of 10 cm. The surroundings exert a pressure of 1 atm in the piston. Heat is added to the system under the isoplestic process until the piston hits the stops. The final condition of the steam is saturated vapor. Determine the work in kW if the mass of the mixture is 23.497 kg/s. For the steam table, please refer to the green book entitled " Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases"arrow_forward
- A 4.081-kg steam-water mixture at 1.0 MPa is contained in an inflexible tank. Heat is added until the pressure rises to 3.5 MPa and the temperature to 400°C. Determine the heat added in kJ.arrow_forwardA piston-cylinder assembly contains a two-phase liquid-vapor mixture of water with an initial dryness fraction of 50%. The mass of the piston is 15 kg with a diameter of 10 cm. The surroundings exert a pressure of 1 atm in the piston. Heat is added to the system under the isopiestic process until the piston hits the stops. The final condition of the steam is saturated vapor. Determine the work in kW if the mass of the mixture is 19.95 kg/s. Only the Final answer is in 3 decimals point.arrow_forwardPlease give complete solution.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY