
Concept explainers
(a)
The volume flow rate of the mixture using the ideal gas mixture.
The mass flow rate of the mixture using the ideal gas mixture.
(a)

Answer to Problem 45P
The volume flow rate of the mixture using the ideal gas mixture is
The mass flow rate of the mixture using the ideal gas mixture is
Explanation of Solution
Refer to Table A-1E, Obtain the molar masses of
Consider 100 lbmol of the mixture. Since the volume fractions are equal to the mole fractions, calculate the mass of each component.
Here, the mole numbers of
Write the equation of total mass of the mixture.
Here, the mass of
Write the equation to calculate the apparent molecular weight of the mixture.
Write the equation to calculate the apparent gas constant of the mixture.
Here, the universal gas constant is
Write the equation of specific volume of the mixture.
Here, temperature of the mixture is T and atmospheric pressure is P.
Calculate the volume flow rate of the mixture.
Here, cross-sectional area of the pipe is A.
Calculate the mass flow rate of the mixture.
Conclusion:
Apply spreadsheet and substitute the given values of mole numbers and molar masses of
S.No | masses | Mole number (N), lbmol | Molar masses (M), lbm/lbmol | |
1 | 30 | 32 | 960 | |
2 | 40 | 28 | 1120 | |
3 | 10 | 44 | 440 | |
4 | 20 | 16 | 320 |
Substitute 960 lbm for
Substitute 2840 lbm for
Substitute
Substitute
Substitute
Thus, the volume flow rate of the mixture using the ideal gas mixture is
Substitute
Thus, the mass flow rate of the mixture using the ideal gas mixture is
(b)
The volume flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes.
The mass flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes.
(b)

Answer to Problem 45P
The volume flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes is
The mass flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes is
Explanation of Solution
Write the equation of reduced temperatures and pressures of
Here, the critical temperature of
Write the equation of compressibility factor of the mixture.
Here, the mole fraction of
Calculate the specific volume of the mixture.
Calculate the mass flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes.
Here, the volume flow rate of mixture using the compressibility factor based on Amagat’s law of additive volumes is
Conclusion:
Refer to Table A-1E, obtain the critical temperatures and pressures of
Substitute 530 R for
Refer to Figure A-15, obtain the compressibility factor for
Substitute 0.30 for
Substitute 1500 psia for P, 0.869 for
Refer to part (a), the value calculated for volume flow rate is
Substitute
Thus, the mass flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes is
(c)
The volume flow rate of the mixture using Kay’s pseudocritical pressure and temperature.
The mass flow rate of the mixture using Kay’s pseudocritical pressure and temperature.
(c)

Answer to Problem 45P
The volume flow rate of the mixture using Kay’s pseudocritical pressure and temperature is
The mass flow rate of the mixture using Kay’s pseudocritical pressure and temperature.
is
Explanation of Solution
Write the critical temperature of a gas mixture.
Write the critical pressure of a gas mixture.
Write the equation of reduced temperature and pressure.
Conclusion:
Substitute 0.30 for
Substitute 0.30 for
Substitute 530 R for
Refer to Figure A-15, obtain the compressibility factor for gas mixture by reading the values of
Substitute 1500 psia for P, 0.915 for
Refer to part (a), the value calculated for volume flow rate is
Substitute
Thus, the mass flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes is
Want to see more full solutions like this?
Chapter 13 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
- According to the principles and steps above, draw the kinematic diagram of following mechanisms. Mark the appropriate scale, calculates the degree of freedom. NO.1 NO.2 NO: 3 NO.: 4arrow_forwardAn office building is planned with a lateral-force-resisting system designed for earthquake resistance in aseismic zone. The seismic capacity of the proposed system, expressed as a force factor, is assumed tofollow a lognormal distribution with a median of 6.5 and a standard deviation of 1.5. The ground motionfrom the largest expected earthquake at the site is estimated to correspond to an equivalent force factor of 5.5.(a) What is the estimated probability that the building will experience damage when subjected to the largest expected earthquake? (b) If the building survives (i.e., experiences no damage) during a previous moderate earthquake with aforce factor of 4.0, what is the updated probability of failure of the building under the largest expectedearthquake?(c) Suppose future occurrences of the largest expected earthquake follow a Poisson process with a mean return period of 500 years. Assuming that damage events from different earthquakes are statisticallyindependent,…arrow_forwardDuring a plant visit, it was noticed that a 12-m-long section of a 10-cm-diameter steam pipe is completely exposed to the ambient air. The temperature measurements indicate that the average temperature of the outer surface of the steam pipe is 75°C when the ambient temperature is 5°C. There are also light winds in the area at 10 km/h. The emissivity of the outer surface of the pipe is 0.8, and the average temperature of the surfaces surrounding the pipe, including the sky, is estimated to be 0°C. Determine the amount of heat lost from the steam during a 10-h-long work day. Steam is supplied by a gas-fired steam generator that has an efficiency of 80 percent, and the plant pays $1.05/therm of natural gas. If the pipe is insulated and 90 percent of the heat loss is saved, determine the amount of money this facility will save a year as a result of insulating the steam pipes. Assume the plant operates every day of the year for 10 h. State your assumptions.arrow_forward
- An old fashioned ice cream kit consists of two concentric cylinders of radii Ra and Rb. The inner cylinder is filled with milk and ice cream ingredients while the space between the two cylinders is filled with an ice-brine mixture. Ice cream begins to form on the inner surface of the inner cylinder. To expedite the process, would you recommend rotating the inner cylinder? Justify your recommendation. icecream/ ice-brine Ra Rbarrow_forwardFind temperatures STRICTLY USING RITZ APPROXIMATION METHODarrow_forwardSolve this Problem using RITZ APPROXIMATION. STEP BY STEParrow_forward
- B/40 The body is constructed of a uniform square plate, a uniform straight rod, a uniform quarter‐circular rod, and a particle (negligible dimensions). If each part has the indicated mass, determine the mass moments of inertia of the body about the x‐, y‐, and z‐axes. Answer Given.arrow_forward(read image) Answer:arrow_forward(read image) Answer Givenarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





