Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
9th Edition
ISBN: 9781260048667
Author: Yunus A. Cengel Dr.; Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13.3, Problem 70P
The gas passing through the turbine of a simple ideal Brayton cycle has the volumetric composition 30 percent nitrogen, 10 percent oxygen, 40 percent carbon dioxide, and 20 percent water. Calculate the thermal efficiency of this cycle when the air enters the compressor at 100 kPa and 20°C, the pressure ratio is 8, and the temperature at the turbine inlet is 1000°C. Model the heat-addition and heat-rejection processes using constant gas properties that are the average of the air and expansion gas properties.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A steam at 169.06 kPa of 90% quality is used to concentrate tomato juice to puree.The specific heats of tomato juice before and after evaporation are 3.89 and 3.45kJ/kg-K. The specific heat of the solid content of tomato juice is 2.67 kJ/kg-K andthe mass flow rate of juice at the feeding section is 2.1 kg/s. What will be the exittemperature of the juice? Assume that the steam after heat exchange exits aspure liquid.
(6).
In a gas turbine plant the hot gases from the combustion chamber pass to the
turbine where they are expanded to the same pressure as the air at the
compressor inlet. The compressor and turbine are directly coupled. The plant
operates between pressure limits of 100kPa and 600kPa. The respective
temperatures are:
Compressor inlet
Turbine inlet
Turbine exhaust
30°C
680°C
370°C
The isentropic efficiency of the compressor is 85% and y = 1.4 throughout.
Calculate:
(a). the temperature of the compressor outlet
(b). the isentropic efficiency of the turbine
In a certain geothermal area, studies show that 1,500,500 kg/hr of pressurized ground water is available at 2500 psia and 6200F. The water will be throttled to 250 psia to produce ert steam and this mixture will be passed through a water separator to remove the water droplets so that saturated steam at 250 psia is available at the entrance of steam turbine for the proposed power plant. Other data are as follows: Discharge pressure of turbine 25 in. Hg. Vaccum Turbine Engine efficiency 75% Mechanical Loss1.5% of shaft power Generator efficiency 97% Assume atmospheric pressure to be 30 in. Hg. Determine the maximum amount of power in kW that the plant can generate.
Chapter 13 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
Ch. 13.3 - What are mass and mole fractions?Ch. 13.3 - Consider a mixture of several gases of identical...Ch. 13.3 - The sum of the mole fractions for an ideal-gas...Ch. 13.3 - Somebody claims that the mass and mole fractions...Ch. 13.3 - Consider a mixture of two gases. Can the apparent...Ch. 13.3 - What is the apparent molar mass for a gas mixture?...Ch. 13.3 - Prob. 7PCh. 13.3 - The composition of moist air is given on a molar...Ch. 13.3 - Prob. 9PCh. 13.3 - Prob. 10P
Ch. 13.3 - A gas mixture consists of 20 percent O2, 30...Ch. 13.3 - Prob. 12PCh. 13.3 - Prob. 13PCh. 13.3 - Consider a mixture of two gases A and B. Show that...Ch. 13.3 - Is a mixture of ideal gases also an ideal gas?...Ch. 13.3 - Express Daltons law of additive pressures. Does...Ch. 13.3 - Express Amagats law of additive volumes. Does this...Ch. 13.3 - Prob. 18PCh. 13.3 - How is the P-v-T behavior of a component in an...Ch. 13.3 - Prob. 20PCh. 13.3 - Prob. 21PCh. 13.3 - Prob. 22PCh. 13.3 - Consider a rigid tank that contains a mixture of...Ch. 13.3 - Prob. 24PCh. 13.3 - Is this statement correct? The temperature of an...Ch. 13.3 - Is this statement correct? The volume of an...Ch. 13.3 - Is this statement correct? The pressure of an...Ch. 13.3 - A gas mixture at 300 K and 200 kPa consists of 1...Ch. 13.3 - Prob. 29PCh. 13.3 - Separation units often use membranes, absorbers,...Ch. 13.3 - Prob. 31PCh. 13.3 - The mass fractions of a mixture of gases are 15...Ch. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - An engineer has proposed mixing extra oxygen with...Ch. 13.3 - A rigid tank contains 0.5 kmol of Ar and 2 kmol of...Ch. 13.3 - A mixture of gases consists of 0.9 kg of oxygen,...Ch. 13.3 - Prob. 37PCh. 13.3 - One pound-mass of a gas whose density is 0.001...Ch. 13.3 - A 30 percent (by mass) ethane and 70 percent...Ch. 13.3 - Prob. 40PCh. 13.3 - Prob. 41PCh. 13.3 - A rigid tank that contains 2 kg of N2 at 25C and...Ch. 13.3 - Prob. 43PCh. 13.3 - Prob. 44PCh. 13.3 - Prob. 45PCh. 13.3 - Is the total internal energy of an ideal-gas...Ch. 13.3 - Prob. 47PCh. 13.3 - Prob. 48PCh. 13.3 - Prob. 49PCh. 13.3 - Prob. 50PCh. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - A mixture of nitrogen and carbon dioxide has a...Ch. 13.3 - The mass fractions of a mixture of gases are 15...Ch. 13.3 - A mixture of gases consists of 0.1 kg of oxygen, 1...Ch. 13.3 - An insulated tank that contains 1 kg of O2at 15C...Ch. 13.3 - An insulated rigid tank is divided into two...Ch. 13.3 - Prob. 59PCh. 13.3 - A mixture of 65 percent N2 and 35 percent CO2...Ch. 13.3 - Prob. 62PCh. 13.3 - Prob. 63PCh. 13.3 - Prob. 66PCh. 13.3 - Prob. 67PCh. 13.3 - Prob. 68PCh. 13.3 - Prob. 69PCh. 13.3 - The gas passing through the turbine of a simple...Ch. 13.3 - Prob. 71PCh. 13.3 - A pistoncylinder device contains 6 kg of H2 and 21...Ch. 13.3 - Prob. 73PCh. 13.3 - Prob. 74PCh. 13.3 - Prob. 75PCh. 13.3 - Prob. 76PCh. 13.3 - Prob. 77PCh. 13.3 - Prob. 78PCh. 13.3 - Prob. 79PCh. 13.3 - Prob. 81PCh. 13.3 - Fresh water is obtained from seawater at a rate of...Ch. 13.3 - Is it possible for an adiabatic liquid-vapor...Ch. 13.3 - Prob. 84PCh. 13.3 - Prob. 85RPCh. 13.3 - The products of combustion of a hydrocarbon fuel...Ch. 13.3 - A mixture of gases is assembled by first filling...Ch. 13.3 - Prob. 90RPCh. 13.3 - Prob. 91RPCh. 13.3 - Prob. 92RPCh. 13.3 - A rigid tank contains a mixture of 4 kg of He and...Ch. 13.3 - A spring-loaded pistoncylinder device contains a...Ch. 13.3 - Prob. 95RPCh. 13.3 - Reconsider Prob. 1395. Calculate the total work...Ch. 13.3 - Prob. 97RPCh. 13.3 - Prob. 100RPCh. 13.3 - Prob. 101RPCh. 13.3 - Prob. 102FEPCh. 13.3 - An ideal-gas mixture whose apparent molar mass is...Ch. 13.3 - An ideal-gas mixture consists of 2 kmol of N2and 4...Ch. 13.3 - Prob. 105FEPCh. 13.3 - Prob. 106FEPCh. 13.3 - An ideal-gas mixture consists of 3 kg of Ar and 6...Ch. 13.3 - Prob. 108FEPCh. 13.3 - Prob. 109FEPCh. 13.3 - Prob. 110FEPCh. 13.3 - Prob. 111FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Hot air at 400°C and 150 kPa is to be used to produce saturated steam at 200°C in an insulated, non-mixing heat exchanger. Water enters the heat exchanger at 20°C while the air leaves at 350°C. The mass flow rate of air is 0.8 kg/s, pressure drops are negligible, and specific heats for air are evaluated at the average air temperature.What is the mass flow rate of water, in kg/s. Report your answer to four decimal places using rounding.arrow_forwardWater vapor enters a continuous flow adiabatic turbine with 3MPa press, 400 oC temperature and 90 m3 / min volumetric flow rate.Some of the steam comes out of the turbine at 0.5 MPa pressure and 200 oC temperature.The remaining part leaves the system at 5 kPa pressure and 90% dryness.Since the total power generated in the turbine is 5 MW, neglect the kinetic and potential energies and calculate the mass flow rate at the outlet no. 2.arrow_forwardIt is suggested to pump 5,000 kg/h of a liquid at 114°C and 1.1 atm abs pressure from a reboiler of a distillation tower to a second distillation unit without cooling the liquid before this joins the pump in a given industrial operation. The liquid has a density of 866 kg/ m2 and a vapor pressure of 1.1 atm at this heat.condition. The reboiler-to-pump line has a friction loss of 5 kN/m2. a. To achieve a net positive suction head of 2.5 m, how far must the liquid level in the reboiler be maintained? b. Compute the power needed to drive the pump if the liquid is to be elevated 5 meters, the pressure in the second unit is atmospheri and the discharge line friction loss is 25 kN/ m2. The pump discharge line has a velocity of 2 m/s, and the pump-motor efficiency is 65 percent.arrow_forward
- What is the mass flow rate in hot stream kg/s?arrow_forwardA single-effect evaporator is being used to concentrate 8000 kg/h of tomato juice from 5% total solids to 30% total solids. The juice enters the evaporator at 25°C. The evaporator is operated with steam (85% quality) at 143.27 kPa. The vacuum inside the evaporator allows the juice to boil at 75°C. Calculate (a) the steam requirements and (b) steam economy for the process. Assume the condensate is discharged at 75°C. The specific heat of the liquid feed is 4.1 kJ/(kg°C) and the concentrated product is 3.1 kJ/(kg°C).arrow_forwardSteam at a rate of 200 kg/min enters a turbine at 350°C and 40 bar through a 7.5-cm internal diameter pipe. The turbine operation is adiabatic, and the effluent leaves as saturated water at 5 bar through a 5-cm diameter pipe. 1. Calculate the work produced by the turbine in kW. 2. What is the enthalpyand phase of the effluent stream? 21 If it leaves the turbine at 75C and 5 bar 22 If it leaves the turbine at 30C and 5 bar 7.5arrow_forward
- A process to liquify nitrogen gas (N2) from 300K, 200atm to 98.69K (saturation temperature) and 7atm is to be designed. The specific enthalpy of the saturated liquid and saturated vapor at 7atm are, Hl = 74.7 J/g and Hv = 239.2 J/g respectively. Consider combining a heat exchanger with the throttle valve. In particular, the gas cooled by throttling, but not liquefied, is used to cool the inlet gas before it enters the throttle valve. This is achieved in the arrangement with the unliqufied gas leaving the heat exchanger at 290K (stream5.) Stream 4 is still at Tsat and 7atm. Is it possible to achieve liquefaction? If so, what fraction of N2 gas is liquefied in this process? (Hint: try combining mass and energy balances on the overall process)arrow_forwardAir is compressed in a compressor from 30 C , 60% relative humidity , and 101kPa to 414kPa and then cooled in an intercooler before entering a second stage of compression. What is the minimum temperature to which the air can be cooled so that condensation does not take place?arrow_forwardThe stream of air and gasoline vapour,in the ratio of 14:1 by mass, enters a gasoline engine at a temperature of 30C and leaves as combustion products at a temperature of 790C. The engine has a specific fuel consumption of 0.3kg/kWh.The net heat transfer rate from the fuel-air stream to the jacket cooling water and to the surroundings is 35kW.The shaft power delivered by the engine is 26kW.Compute the increase in specific enthalpy of the fuel-air stream, assuming the changes in kinetic and potential energy to be negligible.arrow_forward
- There are 2 streams of oxygen is mix in a control volume. The first stream is flowing at 0.125 kg/s at 450 K and the second is flowing at 0.15 kg/s at 700 K. The product stream is leaving at 0.100 kg/s at 800 K. All processes are at atmospheric pressure. Determine the rate of entropy generation for the process assumingthat methane is an ideal gas with Cp = (7/ 2)R and the surrounding temperatureis 750 K.arrow_forward10 kg of feed water is heated in boiler at a constant pressure of 15 bar from 14°C. Calculate enthalpy required and change of entropy when water is converted into (i) wet steam at 0.95 dryness fraction and (ii) superheated steam at 300°C.arrow_forwardPlease useBook: Introduction to Chemical Engineering Thermodynamics 8 edition, 2018 (Smith, J.M., Van Ness, H.C., Abbot, M.M., Swihart.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY