Concept explainers
a)
The volumetric flow rate and mass flow rate of the mixture treating it as an ideal gas mixture.
a)

Answer to Problem 42P
The volume flow rate is
The mass flow rate is
Explanation of Solution
Write the expression to obtain the mass of
Here, number of moles of
Write the expression to obtain the mass of
Here, number of moles of
Write the expression to obtain the mass of
Here, number of moles of
Write the expression to obtain the mass of
Here, number of moles of
Write the expression to obtain the total mass of each component
Write the expression to obtain the total number of moles
Write the expression to obtain the molar mass of the mixture
Write the expression to obtain the gas constant of the mixture
Here, universal gas constant is
Write the expression to obtain the specific volume of the mixture
Here, temperature and pressure is
Write the expression to obtain the volume flow rate
Here, velocity is V, area is A, and diameter is D.
Write the expression to obtain the mass flow rate
Conclusion:
Refer Table A-1, “Molar mass, gas constant, and critical point properties”, obtain the molar masses of
Substitute 30 kmol for
Substitute 40 kmol for
Substitute 10 kmol for
Substitute 20 kmol for
Substitute 960 kg for
Substitute
Substitute 2,840 kg for
Substitute
Substitute
Substitute
Thus, the volume flow rate is
Substitute
Thus, the mass flow rate is
b)
The volumetric flow rate and mass flow rate using a compressibility factor based on Amagad’s law of additive volume.
b)

Answer to Problem 42P
The volume flow rate is
The mass flow rate is
Explanation of Solution
Write the expression to obtain the reduced temperature of
Here, critical temperature of
Write the expression to obtain the reduced pressure of
Here, critical temperature of
Write the expression to obtain the reduced temperature of
Here, critical temperature of
Write the expression to obtain the reduced pressure of
Here, critical temperature of
Write the expression to obtain the reduced temperature of
Here, critical temperature of
Write the expression to obtain the reduced pressure of
Here, critical temperature of
Write the expression to obtain the reduced temperature of
Here, critical temperature of
Write the expression to obtain the reduced pressure of
Here, critical temperature of
Write the expression to obtain the compressibility factor of a mixture
Here, compressibility factor of
Write the expression to obtain the specific volume of the mixture
Write the expression to obtain the volume flow rate
Here, velocity is V, area is A, and diameter is D.
Write the expression to obtain the mass flow rate
Conclusion:
Substitute 288 K for
Substitute 8 MPa for
Refer Table A-15, “Nelson-Olbert generalized compressibility chart”, obtain compressibility factor, Z for
Substitute 288 K for
Substitute 8 MPa for
Refer Table A-15, “Nelson-Olbert generalized compressibility chart”, obtain compressibility factor, Z for
Substitute 288 K for
Substitute 8 MPa for
Refer Table A-15, “Nelson-Olbert generalized compressibility chart”, obtain compressibility factor, Z for
Substitute 288 K for
Substitute 8 MPa for
Refer Table A-15, “Nelson-Olbert generalized compressibility chart”, obtain compressibility factor, Z for
Substitute 0.30 for
Substitute 0.8709 for
Substitute
Thus, the volume flow rate is
Substitute
Thus, the mass flow rate is
c)
The volumetric flow rate and mass flow rate using Key’s pseudocritical pressure and temperature.
c)

Answer to Problem 42P
The volume flow rate is
The mass flow rate is
Explanation of Solution
Write the expression to obtain the pseudo-critical temperature of the mixture
Here, critical temperature of
Write the expression to obtain the pseudo-critical pressure of the mixture
Here, critical pressure of
Write the expression to obtain the reduced temperature
Write the expression to obtain the reduced pressure
Write the expression to obtain the specific volume of the mixture
Write the expression to obtain the volume flow rate
Write the expression to obtain the mass flow rate
Conclusion:
Substitute 0.30 for
Substitute 0.30 for
Substitute 288 K for
Substitute 8 MPa for
Refer Table A-15, “Nelson-Olbert generalized compressibility chart”, obtain compressibility factor,
Substitute 0.92 for
Substitute
Thus, the volume flow rate is
Substitute
Thus, the mass flow rate is
Want to see more full solutions like this?
Chapter 13 Solutions
THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
- (read image) Answer:arrow_forwardThe correct answer is ~168 MPa, how was this found?arrow_forwardAir enters the compressor of a regenerative gas turbine engine at 310 K and 100 kPa, where it is compressed to 900 kPa and 650 K. The regenerator has an effectiveness of 75%, and the air enters the turbine at 1400 K. Assume variable specific heats for air. For a turbine efficiency of 90 percent, determine the amount of heat transfer in the regenerator. The amount of heat transfer in the regenerator is kJ/kg.arrow_forward
- Air enters the compressor of a regenerative gas turbine engine at 310 K and 100 kPa, where it is compressed to 900 kPa and 650 K. The regenerator has an effectiveness of 79 percent, and the air enters the turbine at 1400 K. Assume constant specific heats for air at room temperature. The properties of air at room temperature are cp = 1.005 kJ/kg·K and k = 1.4. For a turbine efficiency of 90 percent, determine the amount of heat transfer in the regenerator. The amount of heat transfer in the regenerator is kJ/kg.arrow_forwardHints: Find the closed loop transfer function and then plot the step response for diFerentvalues of K in MATLAB. Show step response plot for different values of K. Auto Controls Show solutions and provide matlab code NO COPIED ANSWERS OR WILL REPORT!!!! Use own solutionarrow_forwardwhat is shear stress and normal? how to tell them while calculating?arrow_forward
- 12 mm 45 mm 20 kN 20 kN 12 mm 45 mm PROBLEM 1.61 For the assembly and loading of Problem 1.60, determine (a) the average shearing stress in the pin at C, (b) the average bearing stress at C in member BC, (c) the average bearing stress at B in member BC. PROBLEM 1.60 Two horizontal 20-kN forces are applied to pin B of the assembly shown. Knowing that a pin of 20-mm diameter is used at each connection, determine the maximum value of the average normal stress (a) in link AB, (b) in link BC.arrow_forwardHow do you find these answers?arrow_forward250 mm 400 mm A B C E F 250 mm PROBLEM 1.52 Each of the two vertical links CF connecting the two horizontal members AD and EG has a 10 × 40-mm uniform rectangular cross section and is made of a steel with an ultimate strength in tension of 400 MPa, while each of the pins at C and F has a 20-mm diameter and are made of a steel with an ultimate strength in shear of 150 MPa. Determine the overall factor of safety for the links CF and the pins connecting them to the horizontal members. 24 kNarrow_forward
- 50 mm 12 mm B O C OA 300 mm 450 mm E PROBLEM 1.51 Each of the steel links AB and CD is connected to a support and to member BCE by 25-mm-diameter steel pins acting in single shear. Knowing that the ultimate shearing stress is 210 MPa for the steel used in the pins and that the ultimate normal stress is 490 MPa for the steel used in the links, determine the allowable load P if an overall factor of safety of 3.0 is desired. (Note that the links are not reinforced around the pin holes.)arrow_forward3. A 15% magnesium chloride solution is flowing through a 5-nom sch 40 commercial steel pipe at a rate of 325,000 lbm/h. The average temperature of the magnesium chloride solution as it flows through the pipe is 10°F. Determine the convective heat transfer coefficient inside the pipe.arrow_forward2. Jojoba oil is flowing through a ¾-nom stainless steel pipe at a flow rate of 1,850 lbm/h. After the velocity profile in the pipe is fully developed, the oil enters a heater, as shown in Figure P5.7. The length of the heater section is 5 ft. The properties of the jojoba oil at the average temperature in the heater section are given in Table P5.7. Determine the convective heat transfer coefficient inside the heater section of the pipe. ¾ nom stainless steel pipe Heater section L=5ft Fig. P5.7 TABLE P5.7 Thermophysical Properties of Jojoba Oil at the Average Temperature in the Heater P (lbm/ft³) 68.671 (Btu/lbm-R) 0.30339 μ (lbm/ft-s) 0.012095 k (Btu/h-ft-°F) 0.077424arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





