Concept explainers
The work required to pump the gas.

Answer to Problem 63P
The work input is
Explanation of Solution
Write the expression to obtain the mole number of
Here, molar mass of
Write the expression to obtain the mole number of
Here, molar mass of
Write the expression to obtain the total number of moles
Write the expression to obtain the mole fraction of
Write the expression to obtain the mole fraction of
Write the expression to obtain the apparent molecular weight of the mixture
Write the expression to obtain the constant pressure specific heat of the mixture
Here, mole fraction of
Write the expression to obtain the apparent gas constant of the mixture
Here, universal gas constant is
Write the expression to obtain the pseudo-critical temperature of the mixture
Here, critical temperature of
Write the expression to obtain the pseudo-critical pressure of the mixture
Here, critical pressure of
Write the expression to obtain the reduced temperature
Write the expression to obtain the reduced pressure
Write the expression to obtain the mass of the mixture
Write the expression to obtain the initial reduced temperature
Here, mixing critical temperature is
Write the expression to obtain the initial reduced pressure
Here, mixing critical pressure is
Write the expression to obtain the final reduced temperature
Write the expression to obtain the final reduced pressure
Write the expression to obtain the enthalpy change for the ideal gas mixture.
Here, initial state enthalpy is
Write the expression to obtain the enthalpy change with departure factors.
Write the expression to obtain the work input
Conclusion:
Refer Table A-1, “Molar mass, gas constant, and critical point properties”, obtain the molar masses of
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute 5.5208 lbmol for
From the Table of ideal gas specific heats of various common gases, write the constant pressure specific heats of
Substitute
Substitute
From the Table of critical properties, write the critical temperature and pressure for
Substitute 0.8491 for
Substitute 0.8491 for
Substitute 760 R for
Substitute 1,300 psia for
From the Table of Nelson-Obert generalized compressibility chart, write the compressibility factor,
Substitute 0.963 for
Substitute 760 R for
Substitute 1,300 psia for
From the Table of generalized enthalpy departure chart, write the initial enthalpy departure,
Substitute 660 R for
Substitute 20 psia for
From the Table of generalized enthalpy departure chart, write the final enthalpy departure,
Substitute
Substitute
Substitute
Thus, the work input is
Want to see more full solutions like this?
Chapter 13 Solutions
THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
- of state is Derive an expression for the specific heat difference of a substance whose equation RT P = v-b a v(v + b)TZ where a and b are empirical constants.arrow_forwardTemperature may alternatively be defined as T = ди v Prove that this definition reduces the net entropy change of two constant-volume systems filled with simple compressible substances to zero as the two systems approach thermal equilibrium.arrow_forwardUsing the Maxwell relations, determine a relation for equation of state is (P-a/v²) (v−b) = RT. Os for a gas whose av Tarrow_forward
- (◉ Homework#8arrow_forwardHomework#8arrow_forwardBox A has a mass of 15 kilograms and is attached to the 20 kilogram Box B using the cord and pulley system shown. The coefficient of kinetic friction between the boxes and surface is 0.2 and the moment of inertia of the pulley is 0.5 kg * m^ 2. After 2 seconds, how far do the boxes move? A бро Barrow_forwardBox A has a mass of 15 kilograms and is attached to the 20 kilogram Box B using the cord and pulley system shown. The coefficient of kinetic friction between the boxes and surface is 0.2 and the moment of inertia of the pulley is 0.5 kg * m^2. Both boxes are 0.25 m long and 0.25 m high. The cord is attached to the bottom of Box A and the middle of box B. After 2 seconds, how far do the boxes move? A From бро Barrow_forwardSign in PDF Lecture W09.pdf PDF MMB241 - Tutorial L9.pdf File C:/Users/KHULEKANI/Desktop/mmb241/MMB241%20-%20Tutorial%20L9.pdf II! Draw | I│Alla | Ask Copilot + 4 of 4 | D TQ9. If motor M exerts a force of F (10t 2 + 100) N determine the velocity of the 25-kg crate when t kinetic friction between the crate and the plane are μs The crate is initially at rest. on the cable, where t is in seconds, 4s. The coefficients of static and 0.3 and μk = 0.25, respectively. M 3 TQ10. The spring has a stiffness k = 200 N/m and is unstretched when the 25-kg block is at A. Determine the acceleration of the block when s = 0.4 m. The contact surface between the block and the plane is smooth. 0.3 m F= 100 N F= 100 N k = 200 N/m σ Q Q ☆ ا الى 6 ☑arrow_forwardmy ID# is 016948724 please solve this problem step by steparrow_forwardMY ID#016948724 please solve the problem step by spetarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill EducationControl Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY