Concept explainers
(a)
Interpretation:
The concentration of a solution has to be expressed in terms of molality, percent by mass and parts per million.
Concept introduction:
Molality (m): Molality is the number of moles of solute present in one kilogram of solvent. Molality is estimation of moles in relationship with solvent in the solution.
Percent by mass: Mass percent is mass of the element is divided by total mass of the compound and multiplied by 100.
(a)
Answer to Problem 13.2WE
The concentration of the solution in terms of molality (m) =
Explanation of Solution
Calculation of number of moles of glucose solution
By plugging in the value of mass and molar mass of glucose, the number of moles of the glucose solution has calculated.
Calculation of mass of litre of solution
By multiplying in the value of density of the solution per liter, mass of litre of solution has calculated.
Calculation of molality of glucose solution
By plugging in the value of moles of the glucose and kilogram of water, the molality solution has calculated.
The concentration of the solution in terms of molality (m) has calculated as
(b)
Interpretation:
The concentration of a solution has to be expressed in terms of molality, percent by mass and parts per million.
Concept introduction:
Molality (m): Molality is the number of moles of solute present in one kilogram of solvent. Molality is estimation of moles in relationship with solvent in the solution.
Percent by mass: Mass percent is mass of the element is divided by total mass of the compound and multiplied by 100.
(b)
Answer to Problem 13.2WE
The concentration of the solution in terms of percent
by mass =
Explanation of Solution
Calculation of mass percent of glucose solution
By plugging in the value of mass of glucose, mass of water and they are multiplied by 100, mass percent of glucose solution has calculated.
The concentration of the solution in terms of percent
by mass has calculated as
(c)
Interpretation:
The concentration of a solution has to be expressed in terms of molality, percent by mass and parts per million.
Concept introduction:
Molality (m): Molality is the number of moles of solute present in one kilogram of solvent. Molality is estimation of moles in relationship with solvent in the solution.
Percent by mass: Mass percent is mass of the element is divided by total mass of the compound and multiplied by 100.
(c)
Answer to Problem 13.2WE
The concentration of the solution in terms of parts per million=
Explanation of Solution
Calculation of mass parts per million of glucose solution
By plugging in the value of mass of glucose, mass of water and they are multiplied by million, parts per million of glucose solution has calculated.
Conclusion:
The concentration of the solution in terms of parts
per million has calculated as
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry: Atoms First
- Hi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forwardHi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forward. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B 2°C. +2°C. < cleavage Bond A • CH3 + 26. t cleavage 2°C• +3°C• Bond C Cleavage CH3 ZC '2°C. 26. E Strongest 3°C. 2C. Gund Largest BDE weakest bond In that molecule a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest C bond Produces A Weakest Bond Most Strongest Bond Stable radical Strongest Gund produces least stable radicals b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. 人 8°C. formed in bound C cleavage ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. methyl radical •CH3 formed in bund A Cleavagearrow_forward
- Which carbocation is more stable?arrow_forwardAre the products of the given reaction correct? Why or why not?arrow_forwardThe question below asks why the products shown are NOT the correct products. I asked this already, and the person explained why those are the correct products, as opposed to what we would think should be the correct products. That's the opposite of what the question was asking. Why are they not the correct products? A reaction mechanism for how we arrive at the correct products is requested ("using key intermediates"). In other words, why is HCl added to the terminal alkene rather than the internal alkene?arrow_forward
- My question is whether HI adds to both double bonds, and if it doesn't, why not?arrow_forwardStrain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: H eclipsing 4.0 1.0 H: CH3 eclipsing 5.8 1.4 CH3 CH3 eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 115 27.5 cyclobutane 110 26.3 cyclopentane 26.0 6.2 cycloheptane 26.2 6.3 cyclooctane 40.5 9.7 (Calculate your answer to the nearest 0.1 energy unit, and be sure to specify units, kJ/mol or kcal/mol. The answer is case sensitive.) H. H Previous Nextarrow_forwardA certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning