Concept explainers
A mixture of liquids A and B exhibits ideal behavior At 84°C, the total vapor pressure of a solution containing 1.2 moles of A and 2.3 moles of B is 331 mmHg. Upon the addition of another mole of B to the solution, the vapor pressure increases to 347 mmHg. Calculate the vapor pressure of pure A and B at 84°C.
Interpretation:
Vapor pressure of pure A and B solutions at
Concept introduction:
Raoult’s law states that in an ideal mixture of liquid solution, partial pressure of every component is equal to its mole fraction multiplied into vapour pressure of its pure components.
Where,
Answer to Problem 13.141QP
Vapor pressure of pure A solution =
Vapor pressure of pure B solution =
Record the given data
Vapor pressure of the solution =
Amount of solution A =
Amount of solution B =
Increased vapor pressure of the solution =
Explanation of Solution
Explanation
Given data are recorded as shown.
To calculate mole fraction of total solution
Substituting in
By plugging in the values of mole fraction of solution A and B, mole fraction of total solution has calculated.
To calculate mole fraction of total solution after additional moles of B
Substituting in
By plugging in the values of mole fraction of solution A and mole fraction of solution after addition of solution B, after additional moles of B has calculated.
To calculate vapor pressure of pure solution of A and B
Substituting equation (1) into (2) we get,
Substituting the value of
By substituting the equation (1) into equation (2), the vapor pressure of pure solution B has calculated and by subtracting this value into
Vapor pressure of pure solution A has calculated as
Vapor pressure of pure solution B has calculated as
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry: Atoms First
- The vapor pressure of an aqueous solution of urea. CH4N2O, is 291.2 mmHg at a measured temperature. The vapor pressure of pure water at that temperature is 355.1 mmHg. Calculate the mole fraction of each component.arrow_forwardThe vapor pressure of methanol, CH3OH, is 94 torr at 20 C. The vapor pressure of ethanol, C2H5OH, is 44 torr at the same temperature. (a) Calculate the mole fraction of methanol and of ethanol in a solution of 50.0 g of methanol and 50.0 g of ethanol. (b) Ethanol and methanol form a solution that behaves like an ideal solution. Calculate the vapor pressure of methanol and of ethanol above the solution at 20 C.arrow_forwardThe organic salt [(C4H9)4N][ClO4] consists of the ions (C4H9)4N+ and ClO4. The salt dissolves in chloroform. What mass (in grams) of the salt must have been dissolved if the boiling point of a solution of the salt in 25.0 g chloroform is 63.20 C? The normal boiling point of chloroform is 61.70 C and Kb = 3.63 C kg mol1. Assume that the salt dissociates completely into its ions in solution.arrow_forward
- 1. Vapor pressure: Arrange the following aqueous solutions in order of increasing vapor pressure at 25°C: 0.35 m C2H4(OH)2 (ethylene glycol, nonvolatile solute); 0.50 m sugar; 0.20 m KBr; and 0.20 m Na2SO4. C2H4(OH)2 < sugar < KBr < Na2SO4 Na2SO4 < sugar < KBr < C2H4(OH)2 sugar < C2H4(OH)2 < KBr < Na2SO4 KBr < sugar < Na2SO4 < C2H4(OH)2arrow_forwardWhat is the freezing point and normal boiling point of a solution made by adding 39 mL of acetone, C3H6O, to 225 mL of water? The densities of acetone and water are 0.790 g/cm3 and 1.00 g/cm3, respectively.arrow_forwardCalculate the freezing point of 525 g of water that contains 25.0 g of NaCl. Assume i, the vant Hoff factor, is 1.85 for NaCl.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning