![Chemistry: Atoms First](https://www.bartleby.com/isbn_cover_images/9781259638138/9781259638138_largeCoverImage.gif)
(a)
Interpretation:
For mixture of two volatile liquids,
Mole fraction of each component has to be calculated.
Concept introduction:
Raoult’s law states that in an ideal mixture of liquid solution, partial pressure of every component is equal to its mole fraction multiplied into vapour pressure of its pure components.
Where,
P- Partial pressure of each component
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 13.149QP
Mole fraction of component A is
Mole fraction of component B is 0.48
Explanation of Solution
Given data
Molar mass of liquid A =
Molar mass of liquid B =
Vapour pressure of A =
Vapour pressure of B =
Calculation of mole fraction of each component
The mole fraction of the component is calculated by moles of the component is divided by the total number of moles in the mixture.
By plugging in the values of moles of each component and total moles of the component, the mole fraction of each component has calculated.
Mole fraction of component A has calculated as
Mole fraction of component B has calculated as 0.48
(b)
Interpretation:
For mixture of two volatile liquids,
Partial pressure of A and B over the solution at
Concept introduction:
Raoult’s law states that in an ideal mixture of liquid solution, partial pressure of every component is equal to its mole fraction multiplied into vapour pressure of its pure components.
Where,
P- Partial pressure of each component
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 13.149QP
Partial pressure of solution A is
Partial pressure of solution B is
Explanation of Solution
Given data
Molar mass of liquid A =
Molar mass of liquid B =
Vapour pressure of A =
Vapour pressure of B =
Calculation of partial pressure of each component
The formula for partial pressure,
According to Raoult’s law, the vapour pressure of the solution is sum of the individual partial pressure exerted by the solution and then using partial pressure equation, partial pressure of each component has calculated.
Partial pressure of solution A has calculated as
Partial pressure of solution B has calculated as
(c)
Interpretation:
For mixture of two volatile liquids,
Mole fraction of each component in the condensed liquid to be calculated.
Concept introduction:
Raoult’s law states that in an ideal mixture of liquid solution, partial pressure of every component is equal to its mole fraction multiplied into vapour pressure of its pure components.
Where,
P- Partial pressure of each component
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 13.149QP
Mole fraction of component A in condensed liquid is
Mole fraction of component B in condensed liquid is
Explanation of Solution
Given data
Molar mass of liquid A =
Molar mass of liquid B =
Vapour pressure of A =
Vapour pressure of B =
The mole fraction is equal to partial pressure of the component divided by the total pressure.
By plugging in the value of partial pressure of each component and total pressure, the mole fraction of each component at condensed liquid has calculated.
Mole fraction of component A in condensed liquid has calculated as
Mole fraction of component B in condensed liquid has calculated as
(d)
Interpretation:
For mixture of two volatile liquids,
Partial pressure of the components above the condensed liquid at
Concept introduction:
Raoult’s law states that in an ideal mixture of liquid solution, partial pressure of every component is equal to its mole fraction multiplied into vapour pressure of its pure components.
Where,
P- Partial pressure of each component
(d)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Partial pressure of the component A above condensed liquid at
Partial pressure of the component B above condensed liquid at
Calculation of partial pressure of each component
The mole fraction of each component in condensed liquid was calculated I part (c) is,
Partial pressure of the component A above condensed liquid at
Partial pressure of the component B above condensed liquid at
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry: Atoms First
- 2. 200 LOD For an unknown compound with a molecular ion of 101 m/z: a. Use the molecular ion to propose at least two molecular formulas. (show your work) b. What is the DU for each of your possible formulas? (show your work) C. Solve the structure and assign each of the following spectra. 8 6 4 2 (ppm) 150 100 50 ō (ppm) 4000 3000 2000 1500 1000 500 HAVENUMBERI-11arrow_forwardComplete the spectroscopy with structurearrow_forwardComplete the spectroscopy with structurearrow_forward
- Given the following concentrations for a system, calculate the value for the reaction quotient: Cl2(g)+ CS2(g) ⇌ CCl4(g)+ S2Cl2(g) Cl2 = 31.1 atm CS2 = 91.2 atm CCl4 = 2.12 atm S2Cl2 = 10.4 atmarrow_forwardMatch each chemical or item with the proper disposal or cleanup mwthod, Not all disposal and cleanup methods will be labeled. Metal sheets C, calcium, choroide solutions part A, damp metal pieces Part B, volumetric flask part A. a.Return to correct lables”drying out breaker. Place used items in the drawer.: Rinse with deionized water, dry as best you can, return to instructor. Return used material to the instructor.: Pour down the sink with planty of running water.: f.Pour into aqueous waste container. g.Places used items in garbage.arrow_forwardWrite the equilibrium constant expression for the following reaction: HNO2(aq) + H2O(l) ⇌ H3O+(aq) + NO2-(aq)arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)