A 10-lb collar is attached to a spring and slides without friction along a fixed rod in a vertical plane. The spring has an undeformed length of 14 in. and a constant k = 4 lb/in. Knowing that the collar is released from rest in the position shown, determine the force exerted by the rod on the collar at (a) point A, (b) point B. Both these points are on the curved portion of the rod.
Fig. P13.73
(a)
Find the force exerted by the rod on the collar at A
Answer to Problem 13.73P
The force exerted by the rod on the collar at A
Explanation of Solution
Given information:
The weight of the collar (W) is
The un-deformed length
The spring constant (k) is
The length of top support to point A
The length of point A to point B
The horizontal distance from weight to point A
The horizontal distance from point A to point B
The acceleration due to gravity (g) is
Calculation:
Calculate the mass of the collar (m) using the relation:
Substitute
Consider the position 1.
Calculate the length from weight to point B
Substitute
Calculate the stretch in rod
Substitute
Here, the kinetic energy at position 1
Calculate the potential energy in the position 1 due to elongation of the rod
Substitute
Here, the potential energy in the position 1 due to gravitation of the rod
Calculate the total potential energy
Substitute
Consider the position A.
Calculate the length at point A
Substitute
Calculate the stretch in rod
Substitute
Calculate the kinetic energy at position A
Here,
Substitute
Calculate the potential energy in the position A due to elongation of the rod
Substitute
Here, the potential energy in the position 1 due to gravitation of the rod
Calculate the total potential energy
Substitute
The expression for principle for conservation of energy as follows;
Substitute 0 for
Show the free body diagram of the point A with the forces acting as in Figure (1).
Calculate the normal acceleration at position A
Substitute
Calculate the spring force at position A
Substitute
Calculate the angle
Substitute
Calculate the force exerted by the rod on the collar in the point A
Substitute
Therefore, the force exerted by the rod on the collar at A
(b)
Find the force exerted by the rod on the collar at B
Answer to Problem 13.73P
The force exerted by the rod on the collar at B
Explanation of Solution
Given information:
The weight of the collar (W) is
The un-deformed length
The spring constant (k) is
The length of top support to point A
The length of point A to point B
The horizontal distance from weight to point A
The horizontal distance from point A to point B
The acceleration due to gravity (g) is
Calculation:
Consider the position B.
Calculate the length at point B
Substitute
Calculate the stretch in rod
Substitute
Calculate the kinetic energy at position B
Here,
Substitute
Calculate the potential energy in the position B due to elongation of the rod
Substitute
Calculate the potential energy in the position B due to gravitation of the rod
Substitute
Calculate the total potential energy
Substitute
The expression for principle for conservation of energy as follows;
Substitute 0 for
Show the free body diagram of the point B with the forces acting as in Figure (2).
Calculate the normal acceleration at position b
Substitute
Calculate the spring force at position B
Substitute
Calculate the force exerted by the rod on the collar in the point B
Substitute
Therefore, the force exerted by the rod on the collar at B
Want to see more full solutions like this?
Chapter 13 Solutions
VECTOR MECHANICS FOR ENGINEERS W/CON >B
- The crate/box shown has a square shape, an in-plane size of 10 ft X 10 ft and a uniformly distributed 300 lb weight. It is hung on an overhead roller conveyer and being transported. The crate is at rest when a horizontal force P of 40 lb is applied at the point E, which is 4 ft above the bottom of the box. Knowing that the crate starts to move from rest and at the instant t it reaches a speed of 9.3 ft/s. Neglect the frictions at the hinges A and B and between the rollers and the rail track. Answer the following questions: a) Draw FBD and KD of the box. b) What kind of motion the crate is moving in? c) Write out the motion equations. d) Find the acceleration at the crate's mass center and the pin forces at A and B. e) Determine the distance d and time t of the motion when the speed reaches 9.3 ft/s. A B P 10 ft E 4 ft D + 10 ftarrow_forwardA worker slowly moves a 50-kg crate to the left along a loading dock by applying a force P at corner B as shown. Knowing that the crate starts to tip about edge E of the loading dock when a= 200 mm, determine (a) the coefficient of kinetic friction between the crate and the loading dock, (b) the corresponding magnitude P of the force.arrow_forwardThe sliders A and B are connected by a light rigid bar and move with negligible friction in the slots, both of which lie in a vertical plane. For the position shown, the hydraulic cylinder imparts a velocity and acceleration to slider A of 0.4 m/s and 2 m/s, 3 kg 05 m respectively, both to the right. Determine the acceleration of slider B and the force in the 60 bar at this instant. Fig.P2arrow_forward
- Two 2.6-lb collars A and B can slide without friction on a frame, consisting of the horizontal rod OE and the vertical rod CD, which is free to rotate about CD . The two collars are connected by a cord running over a pulley that is attached to the frame at O and a stop prevents collar B from moving. The frame is rotating at the rate 0 =12 rad/s and r= 0.6 ft when the stop is removed allowing collar A to move out along rod OE . Neglecting friction and the mass of the frame, determine, for the position r= 1.2 ft, (a) the transverse component of the velocity of collar A, (b) the tension in the cord and the acceleration of collar A relative to the rod OE.arrow_forwardA belt of negligible mass passes between cylinders A and B and is pulled to the right with a force P. Cylinders A and B weigh, respectively, 5 and 20 lb. The shaft of cylinder A is free to slide in a vertical slot and the coefficients of friction between the belt and each of the cylinders are µs = 0.50 and µk = 0.40. For P = 3.6 lb, determine (a) whether slipping occurs between the belt and either cylinder, (b) the angular acceleration of each cylinder.arrow_forwardA 300-g block is released from rest after a spring of constant k= 600 N/m has been compressed 160 mm. Determine the force exerted by the loop ABCD on the block as the block passes through (a) point A, (b) Point B, (c) . Assume no friction.arrow_forward
- 4. Rod OA rotates about O in a horizontal plane. The motion of the 0.5-lb collar B is defined by the relations r = 10 + 6 coSn t and e = 1 (4t? – 8t), where r is expressed in inches, t in seconds, and 0 in radians. Determine the radial and transverse components of the force exerted on the collar when (a) t= 0, (b) t = 0.5 s. Barrow_forwardPROBLEM 3 - In the system shown, a 150 N collar-pulley assembly slides on a horizontal shaft with coefficient of kinetic friction u = 0.10 between the collar and the shaft, and is acted upon by a force P with a magnitude of P 251.432 N at an angle 0 30.11° as shown. Knowing that the assembly is initially at rest, what is the time when the velocity reaches to 3 m/s? Also, at this instant, find the tension in the cord and the velocity of block A. Use g==9.81 m/s 32.2 ft/s %3D W-150 N WA 106. 54 N てarrow_forwardThe double pulley shown has a weight of 35.0 lb and a centroidal radius of gyration of 5.0 in. Cylinder A (25.0 lb) and block B (16 lb) are attached to cords that wrap around pulleys in the manner shown. The coefficient of kinetic friction between block B and the surface is 0.25. Knowing that the system is released from rest at the position shown (h = 4 ft), determine the velocity of cylinder A when it strikes the ground. 6 in. A h 10 in. Barrow_forward
- Pin B weighs 0.1kg and is free to slide in a horizontal plane along therotating arm OC and along the circular slot DE of radius b=500mm.Neglecting friction and assuming that θ= 15 rad/s andθ=250 rad/s2 for the position θ= 20o , determine for that position(a) the radial and transverse components of the resultant forceexerted on pin B, (b) the forces P and Q exerted on pin B,respectively, by rod OC and the wall of slot DE.arrow_forwardThe contraption shown below consists of two masses connected by a string of negligible mass through a massless pulley. A spring with constant k is placed so that its equilibrium position is located a distance h below the bottom of mass m2. There is no friction either in the pulley or between the surfaces of the masses and the platform. When the two masses m¡ and m2 are released from rest, mass m2 begins falling and pulls mass m¡ up the ramp. a) Find an expression for the maximum compression of the spring d caused by mass m2 when it hits the spring. Your answer should be in terms of the m2 variables given (and g). b) On the axes below, make sketches of the kinetic energy (K), gravitational potential energy (Ugav), and elastic potential energy (Ua) of the system as a function of the height of m2, where y = 0 is defined as the point where mass m2 collides with the spring. Note that the left- hand edge of the axis is the height h, and the right-hand edge of the axis is the height -d. -d…arrow_forwardTwo steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b = 111 mm. A horizontal force of magnitude F = 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. Answers: a= 0 = IN PI 771 m/s² rad/s²arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY