Bullet B weighs 0.5 oz and blocks A and C both weigh 3 lb. The coefficient of friction between the blocks and the plane is μk = 0.25. Initially, the bullet is moving at v0 and blocks A and C are at rest (Fig. 1). After the bullet passes through A, it becomes embedded in block C and all three objects come to stop in the positions shown (Fig. 2). Determine the initial speed of the bullet v0.
Fig. P13.149
Find the initial speed
Answer to Problem 13.149P
The initial speed
Explanation of Solution
Given information:
The weight of the bullet B
The weight of the block A
The weight of the block C
The coefficient of friction between the blocks and plane
The distance between the upper block A and lower block A
The distance between the upper block C and lower block C
The acceleration due to gravity (g) is
Calculation:
Show the free body diagram of the block A as the bullet passes through it as Figure (1).
The expression for the principle of conservation of momentum to the bullet and block A as follows;
Here,
Since the block A is at rest initially, so the velocity
Substitute 0 for
Calculate the mass of the bullet
Substitute
Calculate the mass of the block A
Substitute
The expression for the normal force acting on the block A as follows;
The expression for the work done
Substitute
The expression for the initial kinetic energy of the block A
The final kinetic energy of the block A
The expression for the principle of work-energy to the block A after the bullet just passes through it as follows;
Substitute
Substitute 0.25 for
Show the free body diagram of the block C as the bullet passes through it as in Figure (2).
The expression for the principle of conservation of momentum to the bullet and block A as follows;
Here,
The initial velocity of the block C
Substitute 0 for
Calculate the mass of the block C
Substitute
The expression for the normal force acting on the block C as follows:
The expression for the work done
The expression for the initial kinetic energy of the block C
The final kinetic energy of the block C with bullet embedded
The expression for the principle of work-energy to the block C after the bullet just gets embedded in the block as follows:
Substitute
Substitute 0.25 for
Substitute
Calculate the initial speed of the bullet
Consider the equation (1).
Substitute
Therefore, the initial speed
Want to see more full solutions like this?
Chapter 13 Solutions
VECTOR MECHANICS FOR ENGINEERS W/CON >B
- Can you solve it analytically using laplace transforms and with Matlab code as well please. Thank You.arrow_forwardQ11. Determine the magnitude of the reaction force at C. 1.5 m a) 4 KN D b) 6.5 kN c) 8 kN d) e) 11.3 KN 20 kN -1.5 m- C 4 kN -1.5 m B Mechanical engineering, No Chatgpt.arrow_forwardplease help with this practice problem(not a graded assignment, this is a practice exam), and please explain how to use sohcahtoaarrow_forward
- Solve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forwardaversity of Baoyion aculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023, st Course, 1st Attempt Stage: 3rd Subject: Heat Transfer I Date: 2023\01\23- Monday Time: 3 Hours Q4: A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to radiation at one surface such that the net heat flux is maintained at a constant value of 3×105 W/m². Using the explicit finite-difference techniques with a space increment of Ax = = 75 mm, determine the temperature at the irradiated surface and at an interior point that is 150 mm from the surface after 2 min have elapsed. Q5: (12.5 M) A) A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C. It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is 570 W/m². C. Calculate the temperature in the center of the bar after 3 min. B) Air at 90°C and atmospheric pressure flows over a horizontal flat plate at 60 m/s. The plate is 60 cm square and is maintained at a…arrow_forward
- University of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forwardSolve using graphical method and analytical method, only expert should solvearrow_forwardSolve this and show all of the workarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY