VECTOR MECHANICS FOR ENGINEERS W/CON >B
VECTOR MECHANICS FOR ENGINEERS W/CON >B
12th Edition
ISBN: 9781260804638
Author: BEER
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13.1, Problem 13.17P

(a)

To determine

Find the distance (x) required to bring the train to stop.

(a)

Expert Solution
Check Mark

Answer to Problem 13.17P

The distance (x) required to bring the train to stop is 124.07ft_.

Explanation of Solution

Given information:

The initial speed of the train (v1) is 30mi/h.

The coefficient of kinetic friction (μk) is 0.35.

The weight of train A (WA) is 40tons or 80kips.

The weight of train B (WB) is 50tons or 100kips.

The weight of train C (WC) is 40tons or 80kips.

Assume the acceleration due to gravity (g) is 32.2ft/s2.

Calculation:

Show the free body diagram of the train A, B and C with the forces as in Figure (1).

VECTOR MECHANICS FOR ENGINEERS W/CON >B, Chapter 13.1, Problem 13.17P , additional homework tip  1

Convert the unit of initial velocity of trailer truck from mi/h to ft/s:

v1=30×1.4667=44ft/s

Calculate the force at A (FA) using the relation:

FA=μkNA

Substitute 0.35 for μk and 80kips for NA.

FA=0.35(80)=28kips

Calculate the force at B (FB) using the relation:

FB=μkNB

Substitute 0.35 for μk and 100kips for NB.

FB=0.35(100)=35kips

Calculate the force at C (FC) using the relation:

FC=μkNC

Substitute 0.35 for μk and 80kips for NC.

FC=0.35(80)=28kips

Calculate the total weight (W) using the relation:

W=WA+WB+WC

Substitute 80kips for WA, 100kips for WB, and 80kips for WC.

W=80+100+80=260kips

Calculate the mass of the truck (m) using the formula:

W=mgm=Wg

Substitute 260kips for W and 32.2ft/s2 for g.

m=26032.2=8.075kft/s2

Calculate the initial kinetic energy (T1) using the formula:

T1=12mv12

Substitute 8.075kft/s2 for m and 44ft/s for v1.

T1=12×8.075×442=7816.6kips

The final kinetic energy (T2) is zero.

Calculate work done (U12) for the cars B and C using the formula:

U12=(FB+FC)x

Substitute 35kips for FB and 28kips for FC.

U12=(35+28)x=63x

Use work and energy principle which states that kinetic energy of the particle at a displaced point can be obtained by adding the initial kinetic energy and the work done on the particle during its displacement.

Find the distance (x) required to bring the train to stop:

T1+U12=T2

Substitute 7816.6kips for T1, 0 for T2 and 63x for U12.

7816.6kips63x=063x=7816.6x=124.07ft

Therefore, the distance (x) required to bring the train to stop is 124.07ft_.

(b)

To determine

Find the force in each coupling.

(b)

Expert Solution
Check Mark

Answer to Problem 13.17P

The force in coupling AB is 19.38kips(Tension)_.

The force in coupling BC is 8.62kips(Tension)_.

Explanation of Solution

Given information:

The initial speed of the train (v1) is 30mi/h.

The coefficient of kinetic friction (μk) is 0.35.

The weight of train A (WA) is 40tons or 80kips.

The weight of train B (WB) is 50tons or 100kips.

The weight of train C (WC) is 40tons or 80kips.

Assume the acceleration due to gravity (g) is 32.2ft/s2.

Calculation:

Consider car A:

Show the free body diagram of the train A with the forces as in Figure (2).

VECTOR MECHANICS FOR ENGINEERS W/CON >B, Chapter 13.1, Problem 13.17P , additional homework tip  2

Assume (FAB) to be in tension.

Calculate the mass of the truck (m) using the formula:

WA=mgm=WAg

Substitute 80kips for WA and 32.2ft/s2 for g.

m=8032.2=2.4845kft/s2

Calculate the initial kinetic energy (T1) using the formula:

T1=12mv12

Substitute 2.4845kft/s2 for m and 44ft/s for v1.

T1=12×2.4845×442=2404.996kips

The final kinetic energy (T2) is zero.

Calculate work done (U12) for the cars B and C using the formula:

U12=FABx

Substitute 35kips for FB and 124.07ft for x.

U12=124.07FAB

Use work and energy principle which states that kinetic energy of the particle at a displaced point can be obtained by adding the initial kinetic energy and the work done on the particle during its displacement.

The expression for the principle of work and energy is as follows;

T1+U12=T2

Substitute 2404.996kips for T1, 0 for T2 and 124.07FAB for U12.

2404.996kips124.07FAB=0124.07FAB=2404.996FAB=19.38kips(tension)

Consider car C:

Show the free body diagram of the train C with the forces as in Figure (3).

VECTOR MECHANICS FOR ENGINEERS W/CON >B, Chapter 13.1, Problem 13.17P , additional homework tip  3

Calculate the mass of the truck (m) using the formula:

WA=mgm=WAg

Substitute 80kips for WA and 32.2ft/s2 for g.

m=8032.2=2.4845kft/s2

Calculate the initial kinetic energy (T1) using the formula:

T1=12mv12

Substitute 2.4845kft/s2 for m and 44ft/s for v1.

T1=12×2.4845×442=2,404.996kips

The final kinetic energy (T2) is zero.

Calculate work done (U12) for the cars B and C using the formula:

U12=(FBCFC)x

Substitute 28kips for FC and 124.07ft for x.

U12=(FBC28)124.07=124.07FBC3473.96

Use work and energy principle which states that kinetic energy of the particle at a displaced point can be obtained by adding the initial kinetic energy and the work done on the particle during its displacement.

Find the force in coupling BC:

T1+U12=T2

Substitute 2404.996kips for T1, 0 for T2, and 124.07FBC3473.96 for U12.

2,404.996kips+124.07FBC3,473.96=0124.07FBC=1,068.964FBC=8.62kips(Tension)

Therefore, the forces in coupling AB and BC are 19.38kips(Tension)_ and 8.62kips(Tension)_ respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2- The two blocks shown are originally at rest. Neglecting the masses of the pulleys and the effect of friction in the pulleys and assuming that the coefficients of friction between block A and the horizontal surface are µz = 0.25 and u = 0.20, determine (a) the acceleration of each block, (b) the tension in the cable.
A truck is traveling down a road with a 4-percent grade at a speed of 60 mi/h when its brakes are applied to slow it down to 20 mi/h. An antiskid braking system limits the braking force to a value at which the wheels of the truck are just about to slide. Knowing that the coefficient of static friction between the road and the wheels is 0.60, determine the shortest time needed for the truck to slow down.
The system shown is at rest when a constant 150-N force is applied to collar B. Neglecting the effect of friction, determine (a) the time at which the velocity of collar B will be 2.5 m/s to the left, (b) the corresponding tension in the cable.

Chapter 13 Solutions

VECTOR MECHANICS FOR ENGINEERS W/CON >B

Ch. 13.1 - A 1.4-kg model rocket is launched vertically from...Ch. 13.1 - Packages are thrown down an incline at A with a...Ch. 13.1 - A package is thrown down an incline at A with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - A 1200-kg trailer is hitched to a 1400-kg car. The...Ch. 13.1 - Prob. 13.16PCh. 13.1 - Prob. 13.17PCh. 13.1 - The subway train shown is traveling at a speed of...Ch. 13.1 - A 5000-lb truck is being used to lift a 1000-lb...Ch. 13.1 - The system shown is at rest when a constant 30-lb...Ch. 13.1 - Car B is towing car A at a constant speed of 10...Ch. 13.1 - The motor applies a constant downward force F =...Ch. 13.1 - The motor applies a constant downward force F to...Ch. 13.1 - Two blocks A and B, of mass 4 kg and 5 kg,...Ch. 13.1 - Four 15-kg packages are placed as shown on a...Ch. 13.1 - A 3-kg block rests on top of a 2-kg block...Ch. 13.1 - Solve Prob. 13.26, assuming that the 2-kg block is...Ch. 13.1 - Prob. 13.28PCh. 13.1 - A 7.5-lb collar is released from rest in the...Ch. 13.1 - A 10-kg block is attached to spring A and...Ch. 13.1 - A 5-kg collar A is at rest on top of, but not...Ch. 13.1 - Prob. 13.32PCh. 13.1 - Prob. 13.33PCh. 13.1 - Two types of energy-absorbing fenders designed to...Ch. 13.1 - Prob. 13.35PCh. 13.1 - Prob. 13.36PCh. 13.1 - Prob. 13.37PCh. 13.1 - Prob. 13.38PCh. 13.1 - Prob. 13.39PCh. 13.1 - The sphere at A is given a downward velocity v0...Ch. 13.1 - A bag is gently pushed off the top of a wall at A...Ch. 13.1 - A roller coaster starts from rest at A, rolls down...Ch. 13.1 - In Prob. 13.42, determine the range of values of h...Ch. 13.1 - A small block slides at a speed v on a horizontal...Ch. 13.1 - Prob. 13.45PCh. 13.1 - Prob. 13.46PCh. 13.1 - Prob. 13.47PCh. 13.1 - Prob. 13.48PCh. 13.1 - Prob. 13.49PCh. 13.1 - Prob. 13.50PCh. 13.1 - A 1400-kg automobile starts from rest and travels...Ch. 13.1 - The frictional resistance of a ship is known to...Ch. 13.1 - Prob. 13.53PCh. 13.1 - The elevator E has a weight of 6600 lb when fully...Ch. 13.2 - Two small balls A and B with masses 2m and m,...Ch. 13.2 - Prob. 13.3CQCh. 13.2 - Prob. 13.55PCh. 13.2 - A loaded railroad car of mass m is rolling at a...Ch. 13.2 - A 750-g collar can slide along the horizontal rod...Ch. 13.2 - A 2-lb collar C may slide without friction along a...Ch. 13.2 - Solve Prob. 13.58 assuming the spring CD has been...Ch. 13.2 - A 500-g collar can slide without friction on the...Ch. 13.2 - For the adapted shuffleboard device in Prob 13.28,...Ch. 13.2 - An elastic cable is to be designed for bungee...Ch. 13.2 - It is shown in mechanics of materials that the...Ch. 13.2 - A 1.2-kg collar can slide along the rod shown. It...Ch. 13.2 - A 500-g collar can slide without friction along...Ch. 13.2 - A thin circular rod is supported in a vertical...Ch. 13.2 - Prob. 13.67PCh. 13.2 - A spring is used to stop a 50-kg package that is...Ch. 13.2 - Prob. 13.69PCh. 13.2 - A roller coaster starts from rest at A, rolls down...Ch. 13.2 - A roller coaster starts from rest at A, rolls down...Ch. 13.2 - A 1-lb collar is attached to a spring and slides...Ch. 13.2 - A 10-lb collar is attached to a spring and slides...Ch. 13.2 - Prob. 13.74PCh. 13.2 - Prob. 13.75PCh. 13.2 - A small package of weight W is projected into a...Ch. 13.2 - Prob. 13.77PCh. 13.2 - The pendulum shown is given an initial speed v0 at...Ch. 13.2 - Prove that a force F(x, y, z) is conservative if,...Ch. 13.2 - The force F = (yzi + zxj + xyk)/xyz acts on the...Ch. 13.2 - Prob. 13.81PCh. 13.2 - Prob. 13.82PCh. 13.2 - Prob. 13.83PCh. 13.2 - Prob. 13.84PCh. 13.2 - Prob. 13.85PCh. 13.2 - A satellite describes an elliptic orbit of minimum...Ch. 13.2 - While describing a circular orbit 200 mi above the...Ch. 13.2 - How much energy per pound should be imparted to a...Ch. 13.2 - Knowing that the velocity of an experimental space...Ch. 13.2 - Prob. 13.90PCh. 13.2 - Prob. 13.91PCh. 13.2 - (a) Show that, by setting r = R + y in the...Ch. 13.2 - Collar A has a mass of 3 kg and is attached to a...Ch. 13.2 - Collar A has a mass of 3 kg and is attached to a...Ch. 13.2 - A governor is designed so that the valve of...Ch. 13.2 - A 1.5-lb ball that can slide on a horizontal...Ch. 13.2 - A 1.5-lb ball that can slide on a horizontal...Ch. 13.2 - Using the principles of conservation of energy and...Ch. 13.2 - Prob. 13.99PCh. 13.2 - A spacecraft is describing an elliptic orbit of...Ch. 13.2 - While describing a circular orbit, 185 mi above...Ch. 13.2 - Prob. 13.102PCh. 13.2 - Prob. 13.103PCh. 13.2 - Prob. 13.104PCh. 13.2 - Prob. 13.105PCh. 13.2 - Prob. 13.106PCh. 13.2 - Prob. 13.107PCh. 13.2 - Prob. 13.108PCh. 13.2 - Prob. 13.109PCh. 13.2 - A space vehicle is in a circular orbit at an...Ch. 13.2 - Prob. 13.111PCh. 13.2 - Show that the values vA and vP of the speed of an...Ch. 13.2 - Show that the total energy E of an earth satellite...Ch. 13.2 - A space probe describes a circular orbit of radius...Ch. 13.2 - Prob. 13.115PCh. 13.2 - A spacecraft of mass m describes a circular orbit...Ch. 13.2 - Using the answers obtained in Prob. 13.108, show...Ch. 13.2 - Prob. 13.118PCh. 13.3 - A large insect impacts the front windshield of a...Ch. 13.3 - The expected damages associated with two types of...Ch. 13.3 - Prob. 13.1IMDCh. 13.3 - Prob. 13.2IMDCh. 13.3 - Prob. 13.3IMDCh. 13.3 - Prob. 13.4IMDCh. 13.3 - Prob. 13.5IMDCh. 13.3 - A 35 000-Mg ocean liner has an initial velocity of...Ch. 13.3 - A 2500-lb automobile is moving at a speed of 60...Ch. 13.3 - Prob. 13.121PCh. 13.3 - A truck is hauling a 300-kg log out of a ditch...Ch. 13.3 - The coefficients of friction between the load and...Ch. 13.3 - Steep safety ramps are built beside mountain...Ch. 13.3 - Prob. 13.125PCh. 13.3 - The 18 000-kg F-35B uses thrust vectoring to allow...Ch. 13.3 - Prob. 13.127PCh. 13.3 - Prob. 13.128PCh. 13.3 - The subway train shown is traveling at a speed of...Ch. 13.3 - The subway train shown is traveling at a speed of...Ch. 13.3 - A tractor-trailer rig with a 2000-kg tractor, a...Ch. 13.3 - The motor applies a constant downward force F =...Ch. 13.3 - An 8-kg cylinder C rests on a 4-kg platform A...Ch. 13.3 - An estimate of the expected load on...Ch. 13.3 - A 60-g model rocket is fired vertically. The...Ch. 13.3 - A 12-lb block, which can slide on a frictionless...Ch. 13.3 - A crash test is performed between an SUV A and a...Ch. 13.3 - Prob. 13.138PCh. 13.3 - Prob. 13.139PCh. 13.3 - Prob. 13.140PCh. 13.3 - The triple jump is a track-and-field event in...Ch. 13.3 - The last segment of the triple jump...Ch. 13.3 - The design for a new cementless hip implant is to...Ch. 13.3 - A 28-g steel-jacketed bullet is fired with a...Ch. 13.3 - A 120-ton tugboat is moving at 6 ft/s with a slack...Ch. 13.3 - At an intersection, car B was traveling south and...Ch. 13.3 - The 650-kg hammer of a drop-hammer pile driver...Ch. 13.3 - Prob. 13.148PCh. 13.3 - Bullet B weighs 0.5 oz and blocks A and C both...Ch. 13.3 - A 180-lb man and a 120-lb woman stand at opposite...Ch. 13.3 - A 75-g ball is projected from a height of 1.6 m...Ch. 13.3 - A ballistic pendulum is used to measure the speed...Ch. 13.3 - Prob. 13.153PCh. 13.3 - Prob. 13.154PCh. 13.4 - A 5-kg ball A strikes a 1-kg ball B that is...Ch. 13.4 - A sphere with a speed v0 rebounds after striking a...Ch. 13.4 - Prob. 13.7IMDCh. 13.4 - Prob. 13.8IMDCh. 13.4 - A 10-kg ball A moving horizontally at 12 m/s...Ch. 13.4 - Prob. 13.10IMDCh. 13.4 - Two steel blocks slide without friction on a...Ch. 13.4 - Prob. 13.156PCh. 13.4 - Prob. 13.157PCh. 13.4 - Prob. 13.158PCh. 13.4 - To apply shock loading to an artillery shell, a...Ch. 13.4 - Packages in an automobile parts supply house are...Ch. 13.4 - Three steel spheres of equal mass are suspended...Ch. 13.4 - At an amusement park, there are 200-kg bumper cars...Ch. 13.4 - At an amusement park there are 200-kg bumper cars...Ch. 13.4 - Prob. 13.164PCh. 13.4 - Prob. 13.165PCh. 13.4 - A 600-g ball A is moving with a velocity of...Ch. 13.4 - Two identical hockey pucks are moving on a hockey...Ch. 13.4 - A billiard player wishes to have ball A hit ball B...Ch. 13.4 - Prob. 13.169PCh. 13.4 - Prob. 13.170PCh. 13.4 - A girl throws a ball at an inclined wall from a...Ch. 13.4 - Prob. 13.172PCh. 13.4 - From experimental tests, smaller boulders tend to...Ch. 13.4 - Prob. 13.174PCh. 13.4 - A 1-kg block B is moving with a velocity v0 of...Ch. 13.4 - A 0.25-lb ball thrown with a horizontal velocity...Ch. 13.4 - After having been pushed by an airline employee,...Ch. 13.4 - Prob. 13.178PCh. 13.4 - A 5-kg sphere is dropped from a height of y = 2 m...Ch. 13.4 - A 5-kg sphere is dropped from a height of y = 3 m...Ch. 13.4 - Prob. 13.181PCh. 13.4 - Block A is released from rest and slides down the...Ch. 13.4 - A 23.1-kg sphere A of radius 90 mm moving with a...Ch. 13.4 - A test machine that kicks soccer balls has a 5-lb...Ch. 13.4 - Ball B is hanging from an inextensible cord. An...Ch. 13.4 - A 70-g ball B dropped from a height h0 = 1.5 m...Ch. 13.4 - A 2-kg sphere moving to the right with a velocity...Ch. 13.4 - When the rope is at an angle of = 30, the 1-lb...Ch. 13.4 - When the rope is at an angle of = 30, the 1-kg...Ch. 13 - A 34,000-lb airplane lands on an aircraft carrier...Ch. 13 - There has been renewed interest in pneumatic tube...Ch. 13 - Prob. 13.192RPCh. 13 - A section of track for a roller coaster consists...Ch. 13 - Two identical 40-lb curling stones have diameters...Ch. 13 - A 300-g block is released from rest after a spring...Ch. 13 - A kicking-simulation attachment goes on the front...Ch. 13 - A 625-g basketball and a 58.5-g tennis ball are...Ch. 13 - Prob. 13.198RPCh. 13 - A 2-kg ball B is traveling horizontally at 10 m/s...Ch. 13 - A 2-kg block A is pushed up against a spring...Ch. 13 - The 2-lb ball at A is suspended by an inextensible...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical Design (Machine Design) Clutches, Brakes and Flywheels Intro (S20 ME470 Class 15); Author: Professor Ted Diehl;https://www.youtube.com/watch?v=eMvbePrsT34;License: Standard Youtube License