Concept explainers
The following table lists the concentrations of the principal ions in seawater:
- (a) Calculate the freezing point of seawater.
- (b) Calculate the osmotic pressure of seawater at 25 °C. What is the minimum pressure needed to purify seawater by reverse osmosis?
(a)
Interpretation: The freezing point of seawater has to be determined.
Concept introduction:
Colligative properties: Properties of solutions which having influence on the concentration of the solute in it. Colligative properties are,
- Decrease in the vapor pressure
- Increase in the boiling point
- Decline in the freezing point
- Osmotic pressure
Freezing point depression: The freezing point of the solution varies with the solute concentration.
The number of moles of any substance can be determined using the equation
Answer to Problem 79GQ
Freezing point of seawater is
Explanation of Solution
Given,
Molal freezing point depression constant of water is
The value
Hence, the concentration given in ppm can be taken as the mass of each of the ions on
The number of moles of any substance can be determined using the equation
Number of moles of
Number of moles of
Number of moles of
Number of moles of
Number of moles of
Number of moles of
Number of moles of
So the total moles of principle ions in
Molality of seawater is,
Depression in freezing point is,
Therefore,
Freezing point of seawater is,
Freezing point of seawater is
(b)
Interpretation: The osmotic pressure of seawater at
Concept introduction:
Colligative properties: Properties of solutions which having influence on the concentration of the solute in it. Colligative properties are,
- Decrease in the vapor pressure
- Increase in the boiling point
- Decline in the freezing point
- Osmotic pressure
Osmotic pressure: The pressure created by the column of solution for the system at equilibrium is a measure of the osmotic pressure and is calculated by using the equation,
where,
c is the molar concentration
The number of moles of any substance can be determined using the equation
Answer to Problem 79GQ
The osmotic pressure of seawater at
Explanation of Solution
Given,
The molarity of the solute is
The osmotic pressure of seawater is,
The osmotic pressure of seawater at
To purify the seawater using reverse osmosis method, there should be a minimum pressure of
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
Additional Science Textbook Solutions
Biochemistry: Concepts and Connections (2nd Edition)
Physical Science
Human Biology: Concepts and Current Issues (8th Edition)
Campbell Biology (11th Edition)
Organic Chemistry
- 6-111 As noted in Section 6-8C, the amount of external pressure that must be applied to a more concentrated solution to stop the passage of solvent molecules across a semipermeable membrane is known as the osmotic pressure The osmotic pressure obeys a law similar in form to the ideal gas law (discussed in Section 5-4), where Substituting for pressure and solving for osmotic pressures gives the following equation: RT MRT, where M is the concentration or molarity of the solution. (a) Determine the osmotic pressure at 25°C of a 0.0020 M sucrose (C12H22O11) solution. (b) Seawater contains 3.4 g of salts for every liter of solution. Assuming the solute consists entirely of NaCl (and complete dissociation of the NaCI salt), calculate the osmotic pressure of seawater at 25°C. (c) The average osmotic pressure of blood is 7.7 atm at 25°C. What concentration of glucose (C6H12O6) will be isotonic with blood? (d) Lysozyme is an enzyme that breaks bacterial cell walls. A solution containing 0.150 g of this enzyme in 210. mL of solution has an osmotic pressure of 0.953 torr at 25°C. What is the molar mass of lysozyme? (e) The osmotic pressure of an aqueous solution of a certain protein was measured in order to determine the protein's molar mass. The solution contained 3.50 mg of protein dissolved in sufficient water to form 5.00 mL of solution. The osmotic pressure of the solution at 25°C was found to be 1.54 torr. Calculate the molar mass of the protein.arrow_forwardA 1.00 mol/kg aqueous sulfuric acid solution, H2SO4,freezes at 4.04 C. Calculate i, the vant Hoff factor,for sulfuric acid in this solution.arrow_forwardWhat is the freezing point and normal boiling point of a solution made by adding 39 mL of acetone, C3H6O, to 225 mL of water? The densities of acetone and water are 0.790 g/cm3 and 1.00 g/cm3, respectively.arrow_forward
- For each of the following pairs of solutions, select the solution for which solute solubility is greatest. a. Ammonia gas in water with P = 1 atm and T = 50C Ammonia gas in water with P = 1 atm and T = 90C b. Carbon dioxide gas in water with P = 2 atm and T = 50C Carbon dioxide gas in water with P = 1 atm and T = 50C c. Table salt in water with P = 1 atm and T = 60C Table salt in water with P = 1 atm and T = 50C d. Table sugar in water with P = 2 atm and T = 40C Table sugar in water with P = 1 atm and T = 70Carrow_forwardThe dispersed phase of a certain colloidal dispersion consists of spheres of diameter 1.0 102 nm. (a) What are the volume (V=43r2) and surface area (A = r2) of each sphere? (b) How many spheres are required to give a total volume of 1.0 cm3? What is the total surface area of these spheres in square meters?arrow_forward6-113 List the following aqueous solutions in order of decreasing freezing point: 0.040 M glycerin (C3H8O3) 0.025 M NaBr, and 0.015 M AI(NO3)3 Assume complete dissociation of any salts.arrow_forward
- The freezing point of 0.109 m aqueous formic acid is 0.210C. Formic acid, HCHO2, is partially dissociated according to the equation HCHO2(aq)H+(aq)+CHO2(aq) Calculate the percentage of HCHO2 molecules that are dissociated, assuming the equation for the freezing-point depression holds for the total concentration of molecules and ions in the solution.arrow_forwardFor each of the following pairs of solutions, select the solution for which solute solubility is greatest. a. Oxygen gas in water with P = 1 atm and T = 10C Oxygen gas in water with P = 1 atm and T = 20C b. Nitrogen gas in water with P = 2 atm and T = 50C Nitrogen gas in water with P = 1 atm and T = 70C c. Table salt in water with P = 1 atm and T = 40C Table salt in water with P = 1 atm and T = 70C d. Table sugar in water with P = 3 atm and T = 30C Table sugar in water with P = 1 atm and T = 80Carrow_forwardFluoridation of city water supplies has been practiced in the United States for several decades. It is done by continuously adding sodium fluoride to water as it comes from a reservoir. Assume you live in a medium-sized city of 150,000 people and that 660 L (170 gal) of water is used per person per day. What mass of sodium fluoride (in kilograms) must be added to the water supply each year (365 days) to have the required fluoride concentration of 1 ppm (part per million)that is, 1 kilogram of fluoride per 1 million kilograms of water? (Sodium fluoride is 45.0% fluoride, and water has a density of 1.00 g/cm3.)arrow_forward
- 6-112 List the following aqueous solutions in order of increasing boiling point: 0.060 M glucose (C6H12O6), 0.025 M LiBr, and 0.025 M Zn(NO3)2.Assume complete dissociation of any salts.arrow_forward6-74 An osmotic semipermeable membrane that allows only water to pass separates two compartments, A and B. Compartment A contains 0.9% NaCI, and compartment B contains 3% glycerol C3H8O3. (a) In which compartment will the level of solution rise? (b) Which compartment (if either) has the higher osmotic pressure?arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning