The expected freezing point of L i F solution has to be determined. Concept introduction: Colligative properties: Properties of solutions which having influence on the concentration of the solute in it. Colligative properties are, Decrease in the vapor pressure Increase in the boiling point Decline in the freezing point Osmotic pressure Decline in the freezing point is huge when solute is an electrolyte than when solute is nonelectrolyte. Therefore, change in freezing point is calculated by using the equation, Δ T f p = K f p m s o l u t e i where, K f p is the molal freezing point depression constant. i is van’t Hoff factor van’t Hoff factor, i : it is the relation between change in in freezing point measured and change in in freezing point calculated. It indicates the total number of ions that are produced. Molality (m): Molality is the number of moles of solute present in one kilogram of solvent. Molality (m) = Number of moles of solute 1kg of solvent
The expected freezing point of L i F solution has to be determined. Concept introduction: Colligative properties: Properties of solutions which having influence on the concentration of the solute in it. Colligative properties are, Decrease in the vapor pressure Increase in the boiling point Decline in the freezing point Osmotic pressure Decline in the freezing point is huge when solute is an electrolyte than when solute is nonelectrolyte. Therefore, change in freezing point is calculated by using the equation, Δ T f p = K f p m s o l u t e i where, K f p is the molal freezing point depression constant. i is van’t Hoff factor van’t Hoff factor, i : it is the relation between change in in freezing point measured and change in in freezing point calculated. It indicates the total number of ions that are produced. Molality (m): Molality is the number of moles of solute present in one kilogram of solvent. Molality (m) = Number of moles of solute 1kg of solvent
Solution Summary: The author explains that the expected freezing point of LiF solution has to be determined.
Interpretation: The expected freezing point of LiFsolution has to be determined.
Concept introduction:
Colligative properties: Properties of solutions which having influence on the concentration of the solute in it. Colligative properties are,
Decrease in the vapor pressure
Increase in the boiling point
Decline in the freezing point
Osmotic pressure
Decline in the freezing point is huge when solute is an electrolyte than when solute is nonelectrolyte. Therefore, change in freezing point is calculated by using the equation,
ΔTfp=Kfpmsolutei
where,
Kfp is the molal freezing point depression constant.
i is van’t Hoff factor
van’t Hoff factor, i: it is the relation between change in in freezing point measured and change in in freezing point calculated. It indicates the total number of ions that are produced.
Molality (m): Molality is the number of moles of solute present in one kilogram of solvent.
What is the molar mass of a gas that takes three times longer to effuse than helium?
First image: I have to show the mecanism (with arows and structures) of the reaction at the bottom. Also I have to show by mecanism why the reaction wouldn't work if the alcohol was primary
Second image: I have to show the mecanism (with arrows and structures) for the reaction on the left, where the alcohol A is added fast in one portion
its not an exam
what is the skeletal structure of a tertiary alkyl fluoride with six carbon atoms and no rings.