If a volatile solute is added to a volatile solvent, both substances contribute to the vapor pressure over the solution. Assuming an ideal solution, the vapor pressure of each is given by Raoult’s law, and the total vapor pressure is the sum of the vapor pressures for each component. A solution, assumed to be ideal, is made from 1.0 mol of toluene (C 6 H 5 CH 3 ) and 2.0 mol of benzene (C 6 H 6 ). The vapor pressures of the pure solvents are 22 mm Hg and 75 mm Hg, respectively, at 20 °C. What is the total vapor pressure of the mixture? What is the mole fraction of each component in the liquid and in the vapor?
If a volatile solute is added to a volatile solvent, both substances contribute to the vapor pressure over the solution. Assuming an ideal solution, the vapor pressure of each is given by Raoult’s law, and the total vapor pressure is the sum of the vapor pressures for each component. A solution, assumed to be ideal, is made from 1.0 mol of toluene (C 6 H 5 CH 3 ) and 2.0 mol of benzene (C 6 H 6 ). The vapor pressures of the pure solvents are 22 mm Hg and 75 mm Hg, respectively, at 20 °C. What is the total vapor pressure of the mixture? What is the mole fraction of each component in the liquid and in the vapor?
Solution Summary: The author explains Raoult's law: in a solution, vapor pressure of solvent is proportional to its mole tion.
If a volatile solute is added to a volatile solvent, both substances contribute to the vapor pressure over the solution. Assuming an ideal solution, the vapor pressure of each is given by Raoult’s law, and the total vapor pressure is the sum of the vapor pressures for each component. A solution, assumed to be ideal, is made from 1.0 mol of toluene (C6H5CH3) and 2.0 mol of benzene (C6H6). The vapor pressures of the pure solvents are 22 mm Hg and 75 mm Hg, respectively, at 20 °C. What is the total vapor pressure of the mixture? What is the mole fraction of each component in the liquid and in the vapor?
Q4: Rank the relative nucleophilicity of halide ions in water solution and DMF solution,
respectively.
F CI
Br |
Q5: Determine which of the substrates will and will not react with NaSCH3 in an SN2 reaction to
have a reasonable yield of product.
NH2
Br
Br
Br
OH
Br
Q7: Rank the following groups in order of basicity, nucleophilicity, and leaving group ability.
a) H₂O, OH, CH3COOT
b) NH3, H₂O, H₂S
Q8: Rank the following compounds in order of increasing reactivity in a nucleophilic substitution
reaction with CN as the nucleophile.
Br
A
B
NH2
LL
F
C
D
OH
CI
LLI
E
Q9: Complete the missing entities for following reactions (e.g., major product(s), reactants,
and/or solvents) for the SN2 reactions to occur efficiently. Include curved-arrow mechanism for
reactions a) to d).
a)
H
"Cl
D
+
-OCH 3
Page 3 of 5
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.