
Concept explainers
(a)
Interpretation: The molality, calculated freezing points and van’t Hoff factor (i) for the acids in the given table has to be determined
Concept introduction:
Freezing point depression: The freezing point of the solution varies with the solute concentration.
where,
van’t Hoff factor, i: it is the ration between change in in freezing point measured and change in in freezing point calculated. It indicates the total number of ions that are produced.
Molality (m): Molality is the number of moles of solute present in one kilogram of solvent.
The number of moles of any substance can be determined using the equation
(a)

Answer to Problem 106SCQ
Acid (1 mass %) | Molality (mol/kg | i | ||
-0.56 | ||||
-0.32 | ||||
-0.42 | ||||
-0.30 | ||||
-0.42 | ||||
-0.21 |
Explanation of Solution
The number of moles of any substance can be determined using the equation
Molarity of any substance can be determined using the equation
,
Therefore,
For
In
Depression in freezing point is calculated by using the equation
Therefore,
For
For
In
Depression in freezing point is calculated by using the equation
For
For
In
Depression in freezing point is calculated by using the equation
For
For
In
Depression in freezing point is calculated by using the equation
For
For
In
Depression in freezing point is calculated by using the equation
For
For
In
Depression in freezing point is calculated by using the equation
For
Van’t Hoff factor can be find out using the equation,
For
For
For
For
For
For
(b)
Interpretation: The relation of acidic strength with the i value has to be given.
Concept introduction:
van’t Hoff factor, i: it is the ration between change in in freezing point measured and change in in freezing point calculated. It indicates the total number of ions that are produced.
(b)

Answer to Problem 106SCQ
The values of ‘i’ increases in the increasing order of strength of acids.
Explanation of Solution
The increasing order of acidic strength for the given acids is,
The increasing order of ‘i’ value for the given acids is,
Hence,
The values of ‘i’ increases in the increasing order of strength of acids.
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry & Chemical Reactivity
- Which representation(s) show polymer structures that are likely to result in rigid, hard materials and those that are likely to result in flexible, stretchable, soft materials?arrow_forward3. Enter the molecular weight of the product obtained from the Williamson Ether Synthesis? OH OH & OH excess CH3l Ag₂Oarrow_forwardPlease answer 1, 2 and 3 on the endarrow_forward
- In the box below, specify which of the given compounds are very soluble in polar aprotic solvents. You may select more than one compound. Choose one or more: NaCl NH4Cl CH3CH2CH2CH2CH2CN CH3CH2OH hexan-2-one NaOH CH3SCH3arrow_forwardOn the following structure, select all of the atoms that could ACCEPT a hydrogen bond. Ignore possible complications of aromaticity. When selecting be sure to click on the center of the atom.arrow_forwardRank the compounds below from lowest to highest melting point.arrow_forward
- 18 Question (1 point) Draw the line structure form of the given partially condensed structure in the box provided. :ÖH HC HC H2 ΙΩ Н2 CH2 CH3 CH3 partially condensed formarrow_forwardsomeone else has already submitted the same question on here and it was the incorrect answer.arrow_forwardThe reaction: 2NO2(g) ⇌ N2O4(g) is an exothermic reaction, ΔH=-58.0 kJ/molrxn at 0°C the KP is 58.If the initial partial pressures of both NO2(g) and N2O4(g) are 2.00 atm:A) Is the reaction at equilibrium? If not, what is the value of Q? B) Which direction will the reaction go to reach equilibrium? C) Use an ICE table to find the equilibrium pressures.arrow_forward
- The dissociation of the weak acid, nitrous acid, HNO2, takes place according to the reaction: HNO2 (aq) ⇌ H+(aq) + NO2–(aq) K=7.2 X 10-4 When 1.00 mole of HNO2 is added to 1.00 L of water, the H+ concentration at equilibrium is 0.0265 M.A) Calculate the value of Q if 1.00 L of water is added? B) How will reaction shift if 1.00 L of water is added?arrow_forwardSuppose a certain copolymer elastomeric material “styrene-butadiene rubber”) contains styrene ("S") monomers –(C8H8)– and butadiene ("B") monomers –(C4H6)– and that their numerical ratio S:B = 1:8. What is the mass ratio mS:mB of the two monomers in the material? What is the molecular mass M of a macromolecule of this copolymer with degree of polymerization n = 60,000? Data: AC = 12.01 u, AH = 1.008 u.arrow_forwardLab Questions from Lab: Gravimetric Determination of Calcium as CaC2O4•H2O What is the purpose of the methyl red indicator? Why does a color change to yellow tell you that the reaction is complete? Why is the precipitate rinsed with ice-cold water in step 4? Why not room temperature or hot water? Why is it important that the funnels be placed in a desiccator before weighing (steps 1 and 5)?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




