
Concept explainers
(a)
To determine: The Earth’s orbital speed at aphelion.
(a)

Answer to Problem 69AP
Answer: The Earth’s orbital speed at aphelion is
Explanation of Solution
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
By the conservation of
The angular momentum at perihelion is given as,
The angular momentum at aphelion is given as,
Substitute
Substitute
Conclusion:
Therefore, the Earth’s orbital speed at aphelion is
(b)
To determine: The kinetic and potential energy of the Earth-Sun system at perihelion.
(b)

Answer to Problem 69AP
Answer: The kinetic of the Earth-Sun system at perihelion is
Explanation of Solution
Section 1;
To determine: The kinetic energy of the Earth-Sun system at perihelion.
Answer: The kinetic energy of the Earth-Sun system at perihelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the kinetic energy of the Earth-Sun system at perihelion is,
Substitute
Conclusion:
Therefore, the kinetic of the Earth-Sun system at perihelion is
Section 2;
To determine: The potential energy of the Earth-Sun system at perihelion.
Answer: The potential energy of the Earth-Sun system at perihelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the potential energy of the Earth-Sun system at perihelion is,
Substitute
Conclusion:
Therefore, the potential energy of the Earth-Sun system at perihelion is
(c)
To determine: The kinetic and potential energy of the Earth-Sun system at aphelion.
(c)

Answer to Problem 69AP
Answer: The kinetic of the Earth-Sun system at aphelion is
Explanation of Solution
Section 1;
To determine: The kinetic energy of the Earth-Sun system at aphelion.
Answer: The kinetic energy of the Earth-Sun system at aphelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the kinetic energy of the Earth-Sun system at aphelion is,
Substitute
Conclusion:
Therefore, the kinetic of the Earth-Sun system at aphelion is
Section 2;
To determine: The potential energy of the Earth-Sun system at aphelion.
Answer: The potential energy of the Earth-Sun system at aphelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the potential energy of the Earth-Sun system at aphelion is,
Substitute
Conclusion:
Therefore, the potential energy of the Earth-Sun system at aphelion is
(d)
To determine: Whether the total energy of the Earth-Sun system constant.
(d)

Answer to Problem 69AP
Answer: Yes, the total energy of the Earth-Sun system is remains constant.
Explanation of Solution
Section 1;
To determine: The total energy of the Earth-Sun system at aphelion.
Answer: The kinetic energy of the Earth-Sun system at aphelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the total energy of the Earth-Sun system at aphelion is,
Substitute
Section 2;
To determine: The total energy of the Earth-Sun system at perihelion.
Answer: The kinetic energy of the Earth-Sun system at perihelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the total energy of the Earth-Sun system at perihelion is,
Substitute
Mathematically proved, the sum of kinetic energy and potential energy of the Earth–Sun system at perihelion is identical to the sum of kinetic energy and potential energy of the Earth–Sun system at aphelion. So the total energy of the Earth-Sun system is constant.
Conclusion:
Therefore, yes, the total energy of the Earth-Sun system remains constant.
Want to see more full solutions like this?
Chapter 13 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- need help part a and barrow_forwardComplete the table below for spherical mirrors indicate if it is convex or concave. Draw the ray diagrams S1 10 30 S1' -20 20 f 15 -5 Marrow_forwardA particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be(F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the scalar product v→F→. Work the problem out symbolically first, then plug in numbers after you've simplified the symbolic expression.arrow_forward
- Need help wity equilibrium qestionarrow_forwardneed answer asap please thanks youarrow_forwardA man slides two boxes up a slope. The two boxes A and B have a mass of 75 kg and 50 kg, respectively. (a) Draw the free body diagram (FBD) of the two crates. (b) Determine the tension in the cable that the man must exert to cause imminent movement from rest of the two boxes. Static friction coefficient USA = 0.25 HSB = 0.35 Kinetic friction coefficient HkA = 0.20 HkB = 0.25 M₁ = 75 kg MB = 50 kg P 35° Figure 3 B 200arrow_forward
- A golf ball is struck with a velocity of 20 m/s at point A as shown below (Figure 4). (a) Determine the distance "d" and the time of flight from A to B; (b) Determine the magnitude and the direction of the speed at which the ball strikes the ground at B. 10° V₁ = 20m/s 35º Figure 4 d Barrow_forwardThe rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forwardA particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be (F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the y and z component of the velocity of the particle.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





