Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 29P
Suppose the Sun’s gravity were switched off. The planets would leave their orbits and fly away in straight lines as described by Newton’s first law. (a) Would Mercury ever be farther from the Sun than Pluto? (b) If so, find how long it would take Mercury to achieve this passage. If not, give a convincing argument that Pluto is always farther from the Sun than is Mercury.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Suppose the Sun’s gravity were switched off. The planets would leave their orbits and fly away in straight lines as described by Newton’s first law. (a) Would Mercury ever be farther from the Sun than Pluto? (b) If so, find how long it would take Mercury to achieve this passage. If not, give a convincing argument that Pluto is always farther from the Sun than is Mercury.
(a) Based on the observations, determine the total mass M of the planet.
(b) Which moon and planet of our solar system is the team observing? (Use literature.)
Europa orbits Jupiter at a distance of 6.7 x 108 m from Jupiter's cloudtops
(the surface of the planet). If Jupiter's mass is 1.9 x 1027 kg and radius is
6.8 x 107 m, what is the speed of Europa as it orbits in m/s?
Round to the nearest hundredth. Don't worry about putting units, just put
the number.
Chapter 13 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 13.1 - A planet has two moons of equal mass. Moon 1 is in...Ch. 13.2 - Prob. 13.2QQCh. 13.4 - Prob. 13.3QQCh. 13.6 - Prob. 13.4QQCh. 13 - Prob. 1OQCh. 13 - Prob. 2OQCh. 13 - Prob. 3OQCh. 13 - Prob. 4OQCh. 13 - Prob. 5OQCh. 13 - Prob. 6OQ
Ch. 13 - Prob. 7OQCh. 13 - Prob. 8OQCh. 13 - Prob. 9OQCh. 13 - Prob. 10OQCh. 13 - Prob. 11OQCh. 13 - Prob. 1CQCh. 13 - Prob. 2CQCh. 13 - Prob. 3CQCh. 13 - Prob. 4CQCh. 13 - Prob. 5CQCh. 13 - Prob. 6CQCh. 13 - Prob. 7CQCh. 13 - Prob. 8CQCh. 13 - Prob. 9CQCh. 13 - Prob. 1PCh. 13 - Determine the order of magnitude of the...Ch. 13 - Prob. 3PCh. 13 - During a solar eclipse, the Moon, the Earth, and...Ch. 13 - Prob. 5PCh. 13 - Prob. 6PCh. 13 - Prob. 7PCh. 13 - Prob. 8PCh. 13 - Prob. 9PCh. 13 - Prob. 10PCh. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Review. Miranda, a satellite of Uranus, is shown...Ch. 13 - (a) Compute the vector gravitational field at a...Ch. 13 - Prob. 15PCh. 13 - A spacecraft in the shape of a long cylinder has a...Ch. 13 - An artificial satellite circles the Earth in a...Ch. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - A particle of mass m moves along a straight line...Ch. 13 - Prob. 21PCh. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - Prob. 24PCh. 13 - Use Keplers third law to determine how many days...Ch. 13 - Prob. 26PCh. 13 - Prob. 27PCh. 13 - (a) Given that the period of the Moons orbit about...Ch. 13 - Suppose the Suns gravity were switched off. The...Ch. 13 - Prob. 30PCh. 13 - Prob. 31PCh. 13 - How much energy is required to move a 1 000-kg...Ch. 13 - Prob. 33PCh. 13 - An object is released from rest at an altitude h...Ch. 13 - A system consists of three particles, each of mass...Ch. 13 - Prob. 36PCh. 13 - A 500-kg satellite is in a circular orbit at an...Ch. 13 - Prob. 38PCh. 13 - Prob. 39PCh. 13 - Prob. 40PCh. 13 - Prob. 41PCh. 13 - Prob. 42PCh. 13 - Prob. 43PCh. 13 - Prob. 44PCh. 13 - Prob. 45PCh. 13 - Prob. 46PCh. 13 - Ganymede is the largest of Jupiters moons....Ch. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Prob. 50APCh. 13 - Prob. 51APCh. 13 - Voyager 1 and Voyager 2 surveyed the surface of...Ch. 13 - Prob. 53APCh. 13 - Why is the following situation impossible? A...Ch. 13 - Let gM represent the difference in the...Ch. 13 - A sleeping area for a long space voyage consists...Ch. 13 - Prob. 57APCh. 13 - Prob. 58APCh. 13 - Prob. 59APCh. 13 - Two spheres having masses M and 2M and radii R and...Ch. 13 - Prob. 61APCh. 13 - (a) Show that the rate of change of the free-fall...Ch. 13 - Prob. 63APCh. 13 - Prob. 64APCh. 13 - Prob. 65APCh. 13 - A certain quaternary star system consists of three...Ch. 13 - Studies of the relationship of the Sun to our...Ch. 13 - Review. Two identical hard spheres, each of mass m...Ch. 13 - Prob. 69APCh. 13 - Prob. 70APCh. 13 - Prob. 71APCh. 13 - Prob. 72APCh. 13 - Prob. 73APCh. 13 - Two stars of masses M and m, separated by a...Ch. 13 - Prob. 75APCh. 13 - Prob. 76APCh. 13 - As thermonuclear fusion proceeds in its core, the...Ch. 13 - The Solar and Heliospheric Observatory (SOHO)...Ch. 13 - Prob. 79CPCh. 13 - Prob. 80CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forwardLet gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forwardSuppose a planet with a mass of 2.24 ✕ 1025 kg is orbiting a star with a mass of 3.55 ✕ 1031 kg, and the mean distance between the planet and the star is 1.62 ✕ 1012 m. Using Newton's law of universal gravity, determine the speed of the planet when it is at the mean distance from the star. m/sarrow_forward
- Gravitational force is F = Gm1m2/r². Set G = 1 and m1 = 1, where m2 will be a planet with 1800 times Earth's mass (so m2 = 1800) and 30 times Earth's radius (so r = 30). What will F be?arrow_forwardYou drill a hole right through the center of a spherical planet of radius R and mass M, and drop an object into it. How long does the object take to reach the opposite surface. Express your answer only in terms of M, R and the universal gravitational constant G.arrow_forwardAstronomical observations of our Milky Way galaxy indicate that it has a mass of about 8.0 x 1011 solar masses. A star orbiting near the galaxy's periphery is 5.6 x 104 light-years from its center. (a) What should the orbital period (in y) of that star be? y (b) If its period is 5.3 x 107 years instead, what is the mass (in solar masses) of the galaxy? Such calculations are used to imply the existence of other matter, such as a very massive black hole at the center of the Milky Way. solar massesarrow_forward
- You are a scientist exploring a mysterious planet. You have performed measurements and know the following things: The planet has radius d. It is orbiting his star in a circular orbit of radius b. it takes time T to complete one orbit around the star. the free-fall acceleration on the surface of the planet is a. Derive an expression for the mass and of the star in terms of b,T, and G the universal gravitational constant.arrow_forwardYou may have an image of Sir Isaac Newton sitting under a tree and after being hit on the head by an apple he suddenly "discovered" the Law of Universal Gravitation. In fact, the theory was a result of years’ worth of research, which in turn was based on centuries of accumulated knowledge. He is credited with determining that the following relationship is universal. The gravitational attraction between two objects varies jointly with their masses (m1 and m2) and inversely with the square of the distance (d) between them. By what percent does the force of gravitational attraction change if one mass is increased by 20%, the other mass decreased by 20%, and the separation is reduced by 25%?arrow_forwardIn 2004 astronomers reported the discovery of a large Jupiter-sized planet orbiting very close to the star HD 179949 (hence the term “hot Jupiter”). The orbit was just 1/9 the distance of Mercury from our sun, and it takes the planet only 3.09 days to make one orbit (assumed to be circular). (a) What is the mass of the star? Express your answer in kilograms and as a multiple of our sun’s mass. (b) How fast (in km>s) is this planet moving?arrow_forward
- Many people mistakenly believe that astronauts that orbit the Earth are "above gravity." Calculate the acceleration due to gravity (g) for space shuttle territory, 200 kilometers above the Earth's surface. Earth's mass is 6 x 1024 kilograms and its radius is 6.38 x 106 meters (6380 kilometers). Your answer is what percentage of 9.8m/s2? (Can you help me break it down in a way that I could understand and calculate?)arrow_forwardA satellite is traveling around a planet in a circular orbit with radius R. It moves in a constant speed of v = 1.02 × 104 m/s. The mass of the planet is M = 5.9 × 1024 kg. The mass of the satellite is m = 5.7 × 103 kg. a)Calculate the value of PE in joules. b)Enter an expression for the total energy E of the satellite in terms of m and v. c) Calculate the value of the total energy E in joules.arrow_forwardAstronomical observations of our Milky Way galaxy indicate that it has a mass of about 8.0 ✕ 1011 solar masses. A star orbiting near the galaxy's periphery is 6.0 ✕ 104 light-years from its center. If its period is 5.3 ✕ 107 years instead, what is the mass (in solar masses) of the galaxy? Such calculations are used to imply the existence of other matter, such as a very massive black hole at the center of the Milky Way. solar masses *answer for b*arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY