Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 22P
To determine
The
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sphere, centred on the origin, has radius 31.7 cm,
and is spinning at 3 revolutions per second with its
axis of rotation along the z-axis. A point is chosen
with position vector a = (9, -14, 27) cm on the surface
of the sphere.
a. Calculate the vector representing the angular
velocity of the sphere, w, in rad/s.
i+
(1)
k rad/s
V =
b. Calculate the velocity v of point a in units of
ms-1
i+
k ms-1
j+
Note the units given in the question.
j+
A Ferris wheel on a California pier is 27 m high and rotates once every 32 seconds. When the wheel starts turning, you are at the very top.a. What is your angular position 75 seconds after the wheel starts turning, measured counterclockwise from the top?Express your answer as an angle between 0° and 360°.b. What is your speed ν?
A star with a mass of 3.41 x 1030 kilograms and a radius of 8.20 x 108 meters rotates on its axis once every 33 days.
a. What is the angular momentum of the star? Include units in your answer. b. After running out of fusible matter, the star collapses under its own gravity to form a pulsar with a radius of 24.1 kilometers. What is the period of rotation of the pulsar? Include units in your answer.
PLEASE ANSWER IN HANDWRITING
Chapter 13 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 13.1 - A planet has two moons of equal mass. Moon 1 is in...Ch. 13.2 - Prob. 13.2QQCh. 13.4 - Prob. 13.3QQCh. 13.6 - Prob. 13.4QQCh. 13 - Prob. 1OQCh. 13 - Prob. 2OQCh. 13 - Prob. 3OQCh. 13 - Prob. 4OQCh. 13 - Prob. 5OQCh. 13 - Prob. 6OQ
Ch. 13 - Prob. 7OQCh. 13 - Prob. 8OQCh. 13 - Prob. 9OQCh. 13 - Prob. 10OQCh. 13 - Prob. 11OQCh. 13 - Prob. 1CQCh. 13 - Prob. 2CQCh. 13 - Prob. 3CQCh. 13 - Prob. 4CQCh. 13 - Prob. 5CQCh. 13 - Prob. 6CQCh. 13 - Prob. 7CQCh. 13 - Prob. 8CQCh. 13 - Prob. 9CQCh. 13 - Prob. 1PCh. 13 - Determine the order of magnitude of the...Ch. 13 - Prob. 3PCh. 13 - During a solar eclipse, the Moon, the Earth, and...Ch. 13 - Prob. 5PCh. 13 - Prob. 6PCh. 13 - Prob. 7PCh. 13 - Prob. 8PCh. 13 - Prob. 9PCh. 13 - Prob. 10PCh. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Review. Miranda, a satellite of Uranus, is shown...Ch. 13 - (a) Compute the vector gravitational field at a...Ch. 13 - Prob. 15PCh. 13 - A spacecraft in the shape of a long cylinder has a...Ch. 13 - An artificial satellite circles the Earth in a...Ch. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - A particle of mass m moves along a straight line...Ch. 13 - Prob. 21PCh. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - Prob. 24PCh. 13 - Use Keplers third law to determine how many days...Ch. 13 - Prob. 26PCh. 13 - Prob. 27PCh. 13 - (a) Given that the period of the Moons orbit about...Ch. 13 - Suppose the Suns gravity were switched off. The...Ch. 13 - Prob. 30PCh. 13 - Prob. 31PCh. 13 - How much energy is required to move a 1 000-kg...Ch. 13 - Prob. 33PCh. 13 - An object is released from rest at an altitude h...Ch. 13 - A system consists of three particles, each of mass...Ch. 13 - Prob. 36PCh. 13 - A 500-kg satellite is in a circular orbit at an...Ch. 13 - Prob. 38PCh. 13 - Prob. 39PCh. 13 - Prob. 40PCh. 13 - Prob. 41PCh. 13 - Prob. 42PCh. 13 - Prob. 43PCh. 13 - Prob. 44PCh. 13 - Prob. 45PCh. 13 - Prob. 46PCh. 13 - Ganymede is the largest of Jupiters moons....Ch. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Prob. 50APCh. 13 - Prob. 51APCh. 13 - Voyager 1 and Voyager 2 surveyed the surface of...Ch. 13 - Prob. 53APCh. 13 - Why is the following situation impossible? A...Ch. 13 - Let gM represent the difference in the...Ch. 13 - A sleeping area for a long space voyage consists...Ch. 13 - Prob. 57APCh. 13 - Prob. 58APCh. 13 - Prob. 59APCh. 13 - Two spheres having masses M and 2M and radii R and...Ch. 13 - Prob. 61APCh. 13 - (a) Show that the rate of change of the free-fall...Ch. 13 - Prob. 63APCh. 13 - Prob. 64APCh. 13 - Prob. 65APCh. 13 - A certain quaternary star system consists of three...Ch. 13 - Studies of the relationship of the Sun to our...Ch. 13 - Review. Two identical hard spheres, each of mass m...Ch. 13 - Prob. 69APCh. 13 - Prob. 70APCh. 13 - Prob. 71APCh. 13 - Prob. 72APCh. 13 - Prob. 73APCh. 13 - Two stars of masses M and m, separated by a...Ch. 13 - Prob. 75APCh. 13 - Prob. 76APCh. 13 - As thermonuclear fusion proceeds in its core, the...Ch. 13 - The Solar and Heliospheric Observatory (SOHO)...Ch. 13 - Prob. 79CPCh. 13 - Prob. 80CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problems 62 and 63 are paired. 62. C A disk is rotating around a fixed axis that passes through its center and is perpendicular to the face of the disk. Consider a point on the rim of the disk (point R) and another point halfway between the center and the rim (point H) at one particular instant. a. How does the angular speed v of the disk at point H compare with the angular speed of the disk at point R? b. How does the tangential speed of the disk at point H compare with the tangential speed of the disk at point R? c. Suppose we pick a point H on the disk at random (by throwing a dart, for example), and we compare the speeds at that point with the speeds at point R. How will the answers to parts (a) and (b) be different? Explain.arrow_forwardA compact disc rotates at 500 rev/min. If the diameter of the disc is 120 mm, (a) what is the tangential speed of a point at the edge of the disc? (b) At a point halfway to the center of the disc?arrow_forwardA particle moves 3.0 m along a circle of radius 1.5 m. (a) Through what angle does it rotate? (b) If the particle makes this trip in 1.0 s at a constant speed, what is its angular velocity? (c) What is its acceleration?arrow_forward
- A ball rolls to the left along a horizontal surface, up the slope, and then continues along a horizontal surface (Fig. P12.70). Sketch the angular speed and the magnitude of the angular acceleration of the ball as functions of time. FIGURE P12.70arrow_forwardA particle of mass m moves along a straight line with constant velocity v0 in the x direction, a distance b from the x axis (Fig. P13.10). (a) Does the particle possess any angular momentum about the origin? (b) Explain why the amount of its angular momentum should change or should stay constant. (c) Show that Keplers second law is satisfied by showing that the two shaded triangles in the figure have the same area when . Figure P13.10arrow_forwardSuppose when Earth was created, it was not rotating. However, after the application of a uniform torque after 6 days, it was rotating at 1 rev/day. (a) What was the angular acceleration during the 6 days? (b) What torque was applied to Earth during this period? (c) What force tangent to Earth at its equator would produce this torque?arrow_forward
- The uniform thin rod in Figure P8.47 has mass M = 3.50 kg and length L = 1.00 m and is free to rotate on a friction less pin. At the instant the rod is released from rest in the horizontal position, find the magnitude of (a) the rods angular acceleration, (b) the tangential acceleration of the rods center of mass, and (c) the tangential acceleration of the rods free end. Figure P8.47 Problems 47 and 86.arrow_forwardJeff, running outside to play, pushes on a swinging door, causing its motion to be briefly described by = t2 + 0.800 t + 2.00,where t is in seconds and is in radians. At t = 0 and at t = 1.50s, what are the a. angular position, b. angular speed, and c. angularacceleration of the door?arrow_forwardA centrifuge used for training astronauts rotating at 0.810 rad/s is spun up to 1.81 rad/s with an angular acceleration of 0.050 rad/s2. a. What is the magnitude of the angular displacement that the centrifuge rotates through during this increase in speed? b. If the initial and final speeds of the centrifuge were tripled and the angular acceleration remained at 0.050 rad/s2, what would be the factor by which the result in part (a) would change?arrow_forward
- Two particles of mass m1 = 2.00 kgand m2 = 5.00 kg are joined by a uniform massless rod of length = 2.00 m(Fig. P13.48). The system rotates in thexy plane about an axis through the midpoint of the rod in such a way that theparticles are moving with a speed of 3.00 m/s. What is the angular momentum of the system? FIGURE P13.48arrow_forwardA disk is initially at rest. A penny is placed on it at a distance of 1.0 m from the rotation axis. At time t = 0 s, the disk begins to rotate with a constant angular acceleration of 2.0 rad/s2 around a fixed, vertical axis through its center and perpendicular to its plane. Find the magnitude of the net acceleration of the coin at t = 1.5 s.arrow_forwardA wheel 1.0 m in diameter rotates with an angular acceleration of 4.0rad/s2 . (a) If the wheel’s initial angular velocity is 2.0 rad/s, what is its angular velocity after 10 s? (b) Through what angle does it rotate in the 10-s interval? (c) What are the tangential speed and acceleration of a point on the rim of the wheel at the end of the 10-s interval?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY