INTRO.TO GENERAL,ORGAN...-OWLV2 ACCESS
12th Edition
ISBN: 9781337915977
Author: Bettelheim
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 65P
Interpretation Introduction
Interpretation: The step-by-step equation and complete mechanism needs to be shown for the given
Concept Introduction: According to the question, the mechanism for the acid-catalyzed hydration is same as the acid-catalyzed by hydration of an
Step 1: Addition of proton.
Step 2: Formation of new covalent bond between an electrophile and a nucleophile.
Step 3: Removal of proton.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Hydration of aldehydes and ketones can be catalyzed by acid
or base. Bases catalyze hydration by:
protonating the carbonyl oxygen
making the carbonyl group more electrophilic
employing hydroxide ion, which is a better nucleophile than water
making the carbonyl group less electrophilic
shifting the equilibrium position of the reaction to favor products
help
Alcohols are acidic in nature. Therefore, a strong base can
abstract the acidic hydrogen atom of the alcohol in a process
known as deprotonation. The alcohol forms an alkoxide ion by
losing the proton attached to the oxygen atom of the hydroxyl (
-OH) group. The alkoxide formed can act as a base or a
nucleophile depending on the substrate and reaction conditions.
However, not all bases can abstract the acidic proton of alcohols
and not all alcohols easily lose the proton. Deprotonation
depends on the strength of the base and the acidity of the
alcohol. Strong bases, such as NaNH2, can easily abstract a
proton from almost all alcohols. Likewise, more acidic alcohols
lose a proton more easily.
Determine which of the following reactions would undergo deprotonation based on the strength of the base and the acidity of the alcohol.
Check all that apply.
► View Available Hint(s)
CH3CH,OH + NH3 →CH,CH,O-NH
CH3
CH3
H3C-C-H+NH3 → H3 C-C-H
OH
O-NH
CH3CH2OH + NaNH, → CH3CH,O-Na* + NH3
CHC12
Cl₂…
Chapter 13 Solutions
INTRO.TO GENERAL,ORGAN...-OWLV2 ACCESS
Ch. 13.1 - Prob. 13.1QCCh. 13.1 - Prob. 13.2QCCh. 13.2 - Problem 14-3 Draw structural formulas for the...Ch. 13.2 - Prob. 13.4QCCh. 13.2 - Prob. 13.5QCCh. 13.3 - Problem 14-6 Write the common name for each ether.Ch. 13.4 - Prob. 13.7QCCh. 13.4 - Prob. 13.8QCCh. 13 - 14-8 Answer true or false. The functional group of...Ch. 13 - 14-9 What is the difference in structure between a...
Ch. 13 - 14-10 Which of the following are secondary...Ch. 13 - 14-11 Which of the alcohols in Problem 14-10 are...Ch. 13 - 14-12 Write the 1UPAC name of each compound. (e)...Ch. 13 - Prob. 6PCh. 13 - Prob. 7PCh. 13 - 14-15 Both alcohols and phenols contain an —OH...Ch. 13 - Prob. 9PCh. 13 - 14-17 Explain in terms of noncovalent interactions...Ch. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - 14-20 Show hydrogen bonding between methanol and...Ch. 13 - 14-21 Show hydrogen bonding between the oxygen of...Ch. 13 - 14-22 Arrange these compounds in order of...Ch. 13 - 14-23 Arrange these compounds in order of...Ch. 13 - 14-24 2-Propanol (isopropyl alcohol) is commonly...Ch. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - Prob. 20PCh. 13 - 14-28 Give the structural formula of an alkene or...Ch. 13 - Prob. 22PCh. 13 - 14-30 Show how to distinguish between cyclohexanol...Ch. 13 - 14-31 Compare the acidity of alcohols and phenols,...Ch. 13 - 14-32 Both 2,6-diisopropylcyclohexanol and the...Ch. 13 - 14-33 Write equations for the reaction of...Ch. 13 - 14-34 Write equations for the reaction of...Ch. 13 - 14-35 Write equations for the reaction of each of...Ch. 13 - 14-36 Show how to convert cyclohexanol to these...Ch. 13 - Prob. 30PCh. 13 - Prob. 31PCh. 13 - 14-39 Name two important alcohols derived from...Ch. 13 - 14-40 Name two important alcohols derived from...Ch. 13 - Prob. 34PCh. 13 - 14-42 Write the common name for each ether. ch3...Ch. 13 - Prob. 36PCh. 13 - 14-44 Answer true or false. (a) The functional...Ch. 13 - Prob. 38PCh. 13 - Write the common name for each thiol in Problem 38...Ch. 13 - 14-47 Following are structural formulas for...Ch. 13 - 14-48 Explain why methanethiol, CH3SH, has a lower...Ch. 13 - 14-49 Answer true or false. Today, the major...Ch. 13 - (Chemical Connections 13A ) As stated in the...Ch. 13 - Prob. 44PCh. 13 - Prob. 45PCh. 13 - Prob. 46PCh. 13 - Prob. 47PCh. 13 - (Chemical Connections 13D ) Show that enflurane...Ch. 13 - Prob. 49PCh. 13 - 14-60 Write a balanced equation for the complete...Ch. 13 - 14-61 Knowing what you do about electronegativity,...Ch. 13 - 14-62 Draw structural formulas and write IUPAC...Ch. 13 - Prob. 53PCh. 13 - 14-64 Explain why the boiling point of ethylene...Ch. 13 - Prob. 55PCh. 13 - 14-66 1,4-Butanediol, hexane, and 1-pentanol have...Ch. 13 - 14-67 Of the three compounds given in Problem...Ch. 13 - Prob. 58PCh. 13 - 14-69 Show how to prepare each compound from...Ch. 13 - 14-70 Show how to prepare each compound from...Ch. 13 - 14-71 The mechanism of the acid-catalyzed...Ch. 13 - Prob. 62PCh. 13 - 14-73 Lipoic acid is a growth factor for many...Ch. 13 - 14-74 Following is a structural formula for the...Ch. 13 - Prob. 65PCh. 13 - Prob. 66PCh. 13 - Prob. 67PCh. 13 - 14-78 Consider alkenes A, B, and C. each of which...Ch. 13 - Prob. 69P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- When propene reacts with gaseous hydrogen bromide, HBr, two products, 1-bromopropane and 2-bromopropane are formed. The reaction is a two-step process in which the electrophilic attack occurs in the first step. Identify the electrophile in this reaction Draw a diagram showing the first step of the reaction that leads to the production of 2-bromopropane.arrow_forwardThe addition of water to aldehydes and ketones occurs rapidly, although it is not thermodynamically favored. What would be the product for the reaction above? Hint: Think of the self-ionization of water and the polarity of the carbonyl group.arrow_forwardb) The Wolf-Kishner reduction is a reaction used in Organic Chemistry to convert carbonyl functionalities into methylene group. The reaction was used to convert an aldehyde or ketone to an alkane using hydrazine, base and thermal conditions. The mechanism begins with the attack of hydrazine of the aldehyde or ketone. Stage 1: The reaction of aldehyde/ketone with hydrazine to produce hydrazine Stage 2: Reaction with the base and heat to convert hydrozone to alkane Write the mechanism of the reaction.arrow_forward
- The reaction of a ketone with an alcohol in acidic conditions will result in: an alkane an acetal a geminal (gem) diol an alkenearrow_forwardWhen trichloroacetaldehyde is dissolved in water, almost all of it is converted to the hydrate. Chloral hydrate, the product of the reaction, is a sedative that can be lethal. A cocktail laced with it is known—in detective novels, at least—as a “Mickey Finn.” Explain why an aqueous solution of trichloroacetaldehyde is almost all hydrate.arrow_forwardAcetylene reacts with sodium amide in the presence of propyl halide produces aldehyde produces ketones It produces 2-pentanearrow_forward
- Can you draw the mechanism for the synthesis of cyclohexene from cyclohexanol through an acid-catalyzed dehydration reaction. Where Phosphoric acid donates a proton ((H^+)) to the hydroxyl group of cyclohexanol, forming a protonated cyclohexanol intermediate. • The protonated cyclohexanol undergoes dehydration, leading to the removal of a water molecule and the formation of cyclohexene. • The released proton combines with water to form hydronium ion (H3O+), regenerating the catalyst. The mechanism should illustrate the acid-catalyzed dehydration process, where phosphoric acid facilitates the removal of water from cyclohexanol, resulting in the formation of cyclohexene.arrow_forward1-Octen-3-ol is a potent mosquito attractant commonly used in mosquito traps. A number of reactions, including hydrogenation, will transform 1-octen-3-ol into a less effective molecule. Draw the structure of a hydrogenation product of 1-octen-3-ol.arrow_forwardplease complete the reactionarrow_forward
- Mixing cyclohexanol with phosphoric acid is an exothermic process, whereas the production of cyclohexene is endothermic. Construct an energy diagram showing the course of this reaction. Label the diagram with the starting alcohol, the oxonium ion (the protonated alcohol), the carbocation, and the product.arrow_forwardFollowing ester (methyl benzoate) was hydrolyzed in presence of an acid catalyst. This reaction produces --- and ---. OCH3 benzoic acid, ethanol benzoic acid, water acetic acid, benzene benzoic acid, methanolarrow_forwardTrue or False Considering that two carbon chains have equal number of carbons, but one has Fluorine and the other has Iodine, the one with iodine will have a higher boiling point. Mild oxidation of alkenes results to similar product as that of nucleophilic addition of water to aldehydes.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Alcohols, Ethers, and Epoxides: Crash Course Organic Chemistry #24; Author: Crash Course;https://www.youtube.com/watch?v=j04zMFwDeDU;License: Standard YouTube License, CC-BY