
Interpretation:
The structural formula of the most stable cyclohexadienyl cation intermediate formed in each of the given reactions is to be written. Whether this carbocation is more or less stable than the cyclohexadienyl intermediate formed by benzene, is to be determined.
Concept Introduction:
Compounds containing benzene ring undergo electrophilic
The mechanism of electrophilic aromatic substitution involves two steps.
In the first step, an electrophile accepts an electron pair from pi system of benzene giving an intermediate called as cyclohexadienyl cation or arenium ion intermediate.
In the second step, the cyclohexadienyl cation intermediate undergoes deprotonation to restore the aromaticity of benzene ring.
In order to form cyclohexadienyl cation intermediate, the electrophile must be reactive.
Electron donating substituents present on the benzene ring increase the reactivity towards the electrophilic aromatic substitution reactions by stabilizing the cyclohexadienyl cation intermediate.
When an electron donating substituent is attached to the benzene ring, the cyclohexadienyl cation intermediate formed will be more stable than the cyclohexadienyl intermediate formed by benzene.
When an electron withdrawing substituent is attached to the benzene ring, the cyclohexadienyl cation intermediate formed will be less stable than the cyclohexadienyl intermediate formed by benzene.
Stability of a cyclohexadienyl cation intermediate depends mainly on two factors – its proximity to an electron donating or electron withdrawing group and whether it is an allylic carbocation or not.

Want to see the full answer?
Check out a sample textbook solution
Chapter 13 Solutions
Organic Chemistry - Standalone book
- Q5: Label each chiral carbon in the following molecules as R or S. Make sure the stereocenter to which each of your R/S assignments belong is perfectly clear to the grader. (8pts) R OCH 3 CI H S 2pts for each R/S HO R H !!! I OH CI HN CI R Harrow_forwardCalculate the proton and carbon chemical shifts for this structurearrow_forwardA. B. b. Now consider the two bicyclic molecules A. and B. Note that A. is a dianion and B. is a neutral molecule. One of these molecules is a highly reactive compound first characterized in frozen noble gas matrices, that self-reacts rapidly at temperatures above liquid nitrogen temperature. The other compound was isolated at room temperature in the early 1960s, and is a stable ligand used in organometallic chemistry. Which molecule is the more stable molecule, and why?arrow_forward
- A mixture of C7H12O2, C9H9OCl, biphenyl and acetone was put together in a gas chromatography tube. Please decide from the GC resutls which correspond to the peak for C7,C9 and biphenyl and explain the reasoning based on GC results. Eliminate unnecessary peaks from Gas Chromatography results.arrow_forwardIs the molecule chiral, meso, or achiral? CI .CH3 H₂C CIarrow_forwardPLEASE HELP ! URGENT!arrow_forward
- Identify priority of the substituents: CH3arrow_forwardHow many chiral carbons are in the molecule? OH F CI Brarrow_forwardA mixture of three compounds Phen-A, Acet-B and Rin-C was analyzed using TLC with 1:9 ethanol: hexane as the mobile phase. The TLC plate showed three spots of R, 0.1 and 0.2 and 0.3. Which of the three compounds (Phen-A; Acet-B or Rin-C) would have the highest (Blank 1), middle (Blank 2) and lowest (Blank 3) spot respectively? 0 CH: 0 CH, 0 H.C OH H.CN OH Acet-B Rin-C phen-A A A <arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningMacroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks Cole


