EBK THE COSMIC PERSPECTIVE
9th Edition
ISBN: 9780135161760
Author: Voit
Publisher: VST
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 52EAP
Identical Planets? Imagine two planets orbiting a star with orbits edge-on to the Earth. The peak Doppler shift for each is 50 m/s, but one has a period of 3 days and the other has a period of 300 days. Calculate the two minimum masses and say which, if either, is larger. (Hint: See Mathematical Insight 13.2.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
H5.
A star with mass 1.05 M has a luminosity of 4.49 × 1026 W and effective temperature of 5700 K. It dims to 4.42 × 1026 W every 1.39 Earth days due to a transiting exoplanet. The duration of the transit reveals that the exoplanet orbits at a distance of 0.0617 AU. Based on this information, calculate the radius of the planet (expressed in Jupiter radii) and the minimum inclination of its orbit to our line of sight.
Follow up observations of the star in part reveal that a spectral feature with a rest wavelength of 656 nm is redshifted by 1.41×10−3 nm with the same period as the observed transit. Assuming a circular orbit what can be inferred about the planet’s mass (expressed in Jupiter masses)?
3.6 A spacecraft is approaching Venus with V = 10 km/s and b = 10,000 km.
What will be the periapsis radius at Venus?
Solution: 7266 km.
Which one of the mechanism below can NOT be responsible for providing intrinsic luminosity for planets?
Gravitational settling of the hydrogen molecules.
Gravitational settling of the helium atoms.
Residual heat dating from the formation epoch of the planets.
Decay of radio-active isotopes like uranium.
Chapter 13 Solutions
EBK THE COSMIC PERSPECTIVE
Ch. 13 - Prob. 1VSCCh. 13 - Prob. 2VSCCh. 13 - Prob. 3VSCCh. 13 - Prob. 4VSCCh. 13 - Prob. 5VSCCh. 13 - I. Why are extrasolar planets hard to detect...Ch. 13 - 2. What are the two major approaches to detecting...Ch. 13 - 3. How can gravitational lugs from orbiting...Ch. 13 - Prob. 4EAPCh. 13 - Briefly describe Ihe Doppler method. Summarize the...
Ch. 13 - How does the transit method work’ What was the...Ch. 13 - Prob. 7EAPCh. 13 - Prob. 8EAPCh. 13 - Prob. 9EAPCh. 13 - Prob. 10EAPCh. 13 - Prob. 11EAPCh. 13 - Prob. 12EAPCh. 13 - Prob. 13EAPCh. 13 - Prob. 14EAPCh. 13 - Prob. 15EAPCh. 13 - Prob. 16EAPCh. 13 - Prob. 17EAPCh. 13 - Prob. 18EAPCh. 13 - Prob. 19EAPCh. 13 - Decide whether the statement makes sense lor is...Ch. 13 - Prob. 21EAPCh. 13 - Prob. 22EAPCh. 13 - Prob. 23EAPCh. 13 - Prob. 24EAPCh. 13 - Decide whether the statement makes sense lor is...Ch. 13 - Prob. 26EAPCh. 13 - Prob. 27EAPCh. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - When is a Theory Wrong? As discussed in this...Ch. 13 - Prob. 40EAPCh. 13 - Prob. 42EAPCh. 13 - Prob. 43EAPCh. 13 - Comparing Methods. What are the strengths and...Ch. 13 - No Hot Jupiters Here. How do we think hot Jupiters...Ch. 13 - Prob. 46EAPCh. 13 - Prob. 47EAPCh. 13 - Lost in the Glare. This exercise helps you...Ch. 13 - Transit of TrES-1. The planet TrES-1, orbiting a...Ch. 13 - Planet Around 51 Pegasi. The star 51 Pegasi has...Ch. 13 - Identical Planets? Imagine two planets orbiting a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- There is one part to this question. I need to know the cm. Thank you!arrow_forwardConvert 1.39 x 10^9 kilograms to Jupiter Masses, MJ. The mass of Jupiter is known as MJ = 1.898×1027 kg. Mplanet = _________________________ MJ *The accepted mass of this planet HD 209458b is Mplanet = 0.69 MJ. Check your answer for correctness.arrow_forwardYou decide to go on an interstellar mission to explore some of the newly discovered extrasolar planets orbiting the star ROTOR. Your spacecraft arrives in the new system, in which there are five planets. ROTOR is identical to the Sun (in terms of its size, mass, age and composition). From your observations of these planets, you collect the following data: Density Average Distance from star (AU] Planet Mass Radius Albedo Temp. [C] Surf. Press. MOI Rotation [Earth = 1] (Earth = 1] [g/cm³] [Atm.] Period (Hours] Factor SIEVER EUGENIA 4.0 0.001 2.0 0.1 5.0 1.0 0.3 20 0.8 N/A 3.0 0.2 N/A 0.3 0.4 0.35 20 10 500 1000 5.0 4.0 0.5 0.8 0.4 0.7 -50 MARLENE CRILE 1.0 1.0 3.0 8.0 1,5 0.0 0.50 0.50 0.25 150 0.4 JANUS 100 12 0.1 10 -80 0.2 200 Figure 1: А Rotor 850 890 900 Wavelength (nm) A Sun В C 860 900 910 Wavelength (nm) 2414 a asarrow_forward
- In Table 2, there is a list of 15 planets, some of which are real objects discovered by the Kepler space telescope, and some are hypothetical planets. For each one, you are provided the temperature of the star that each planet orbits in degrees Kelvin (K), the distance that each planet orbits from their star in astronomical units (AUs) and the size or radius of each planet in Earth radii (RE). Since we are concerned with finding Earth-like planets, we will assume that the composition of these planets are similar to Earth's, so we will not directly look at their masses, rather their sizes (radii) along with the other characteristics. Determine which of these 15 planets meets our criteria of a planet that could possibly support Earth-like life. Use the Habitable Planet Classification Flow Chart (below) to complete Table 2. Whenever the individual value you are looking at falls within the range of values specified on the flow chart, mark the cell to the right of the value with a Y for…arrow_forwardImagine that astronomers have just discovered a planet orbiting another star (other than the Sun), and they have reported the mass of the planet as 4.2 Jupiter-masses. Explain in a few words what this means.arrow_forwardA certain binary system consists of two stars that have equal masses and revolve in circular orbits around a fixed point half-way between them. If the orbital velocity of each star is v=186 km/s and the orbital period of each is 11.3 days, calculate the mass M of each star. Give your answer in units of the solar mass, 1.99×1030 kg (e.g. if each planet's mass is 3.98×1030 kg, you would answer "2.00").arrow_forward
- thanks. Moon is at the distance 384400 km from Earth and orbits the Earth every ∼28 days. If the radius of the Moon is 1737 km (consider it to be spherical), what is the area of the moon as measured by the observer on Earth? (Hint: Length contractionarrow_forwardA planet (in another galaxy) takes 5 000 Earth days to complete one full revolution around its own star (not the Sun). It is exactly as far away from its star as Earth is to its own Sun. Draw a FBD, then determine how many times more or less massive this star is than our sun (in other words, give a factor of mass, e.g “5x larger” or “5x smaller”)arrow_forwardPlease answer the question and subquestions completely! This is one whole question which has subquestions! According to the official Bartleby guidelines, each question can have up to two subquestions! Thank you! 1) A missile is launched upward with a speed that is half the escape speed. What height (in radii of Earth) will it reach? R/4 R/3 R/2 R 2R A) The weight of a 0.60 kg object at the surface of Planet V is 20 N. The radius of the planet is 4 x 10 6 m. Find the gravitational acceleration at a distance of 2 x 10 6 m from the surface of this planet. 8.9 m/s2 11 m/s2 13 m/s2 18 m/s2 B) Two masses are precisely 1 m apart from each other. The gravitational force each exerts on the other is exactly 1 N. If the masses are identical, what is each mass? 1.22 x 105 kg 1.34 x 1010 kg 2.50 x 105 kg 1.58 x 1010 kgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY