EBK THE COSMIC PERSPECTIVE
9th Edition
ISBN: 9780135161760
Author: Voit
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 20EAP
Decide whether the statement makes sense lor is clearly true) or does not make sense (or is clearly false). Explain clearly, not all of these have definitive answers, so your explanation is more important than your chosen answer.
- An extraterrestrial astronomer surveying our solar system with the Doppler method could discover the existence of Jupiter with just a few days of observation.
- The fact that we have not yet discovered an Earth-size extrasolar planet in an Earth-like orbit tells us that such planets must be very rare.
- Within the next few years, astronomers expea to confirm all the planet detections made with the astrometric and Doppler methods by observing transits of these same planets.
- The infrared brightness of a star system decreases when a planet goes into eclipse.
. Some extrasolar planets are likely to be made mostly of water.
. Some extrasolar planets are likely to be made mostly of gold
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In Table 2, there is a list of 15 planets, some of which are real objects discovered by the Kepler space telescope, and some are hypothetical planets. For each one, you are provided the temperature of the star that each planet orbits in degrees Kelvin (K), the distance that each planet orbits from their star in astronomical units (AUs) and the size or radius of each planet in Earth radii (RE). Since we are concerned with finding Earth-like planets, we will assume that the composition of these planets are similar to Earth's, so we will not directly look at their masses, rather their sizes (radii) along with the other characteristics. Determine which of these 15 planets meets our criteria of a planet that could possibly support Earth-like life. Use the Habitable Planet Classification Flow Chart (below) to complete Table 2. Whenever the individual value you are looking at falls within the range of values specified on the flow chart, mark the cell to the right of the value with a Y for…
Using the GUFSA Template. Round off your final answer to the nearest hundredths. As we already know, rockets travel at very high speeds. How much time will it take a rocket (in seconds) to reach the moon if the moon is 238,900 miles away from the Earth, and the rocket is travelling 1,800,000 centimeters per minute? (express your answer in meters per second)
Kepler-444 is one of many stars with terrestrial planets that is over 10 billion
a) What do you think the spectral type of Kepler-444 might be?
b) How do stars of this spectral type end their lives?
c) If evolution followed a similar course on a habitable pranet around a star similar to
Kepler-444, it would be 5 billion years more advanced than we are. Let’s try to project
our future and see what happens. In particular, suppose our civilization gets motivated
enough to colonize another planet. Kepler indicates that most stars have potentially
habitable (and colonizable) planets, so roughly how far away is the typical “nearest"
planet?
d) The New Horizons probe on its way to Pluto took 9 years to travel 30 AU. If we could
send colony ships with the same average speed, roughly how long would it take to reach
the typical nearest planet?
уears
old.
Chapter 13 Solutions
EBK THE COSMIC PERSPECTIVE
Ch. 13 - Prob. 1VSCCh. 13 - Prob. 2VSCCh. 13 - Prob. 3VSCCh. 13 - Prob. 4VSCCh. 13 - Prob. 5VSCCh. 13 - I. Why are extrasolar planets hard to detect...Ch. 13 - 2. What are the two major approaches to detecting...Ch. 13 - 3. How can gravitational lugs from orbiting...Ch. 13 - Prob. 4EAPCh. 13 - Briefly describe Ihe Doppler method. Summarize the...
Ch. 13 - How does the transit method work’ What was the...Ch. 13 - Prob. 7EAPCh. 13 - Prob. 8EAPCh. 13 - Prob. 9EAPCh. 13 - Prob. 10EAPCh. 13 - Prob. 11EAPCh. 13 - Prob. 12EAPCh. 13 - Prob. 13EAPCh. 13 - Prob. 14EAPCh. 13 - Prob. 15EAPCh. 13 - Prob. 16EAPCh. 13 - Prob. 17EAPCh. 13 - Prob. 18EAPCh. 13 - Prob. 19EAPCh. 13 - Decide whether the statement makes sense lor is...Ch. 13 - Prob. 21EAPCh. 13 - Prob. 22EAPCh. 13 - Prob. 23EAPCh. 13 - Prob. 24EAPCh. 13 - Decide whether the statement makes sense lor is...Ch. 13 - Prob. 26EAPCh. 13 - Prob. 27EAPCh. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - Choose Lhe best ansuter to each of the following....Ch. 13 - When is a Theory Wrong? As discussed in this...Ch. 13 - Prob. 40EAPCh. 13 - Prob. 42EAPCh. 13 - Prob. 43EAPCh. 13 - Comparing Methods. What are the strengths and...Ch. 13 - No Hot Jupiters Here. How do we think hot Jupiters...Ch. 13 - Prob. 46EAPCh. 13 - Prob. 47EAPCh. 13 - Lost in the Glare. This exercise helps you...Ch. 13 - Transit of TrES-1. The planet TrES-1, orbiting a...Ch. 13 - Planet Around 51 Pegasi. The star 51 Pegasi has...Ch. 13 - Identical Planets? Imagine two planets orbiting a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The international space station (ISS) orbits 400 km above Earth's surface at 7.66 km/s (17,100 mph). Suppose the ISS is moved to 400 km above Mars. 1. To maintain its orbit above Mars, will the ISS have to move faster or slower that its orbital speed around Earth? Justify your answer. 2. Will astronauts on the ISS feel lighter, heavier, or no change at all while in orbit around Mars. Explain your answer.arrow_forwardSuppose there were a planet in our Solar System orbiting at a distance of 0.5 AU from the Sun, and having ten times the mass and four times the radius of Earth. For reference, the Earth has a mass of 5.97 × 10*24 kg and a radius of 6,378 km. a)Calculatethe density of this hypothetical planet. b)Basedon your answer from part a), what do you think this planet would be made of? Explain your c)Dothis planet’s properties agree with the condensation theory for the formation of our Solar System? Why or why not?arrow_forwardImpact Energy. Consider a comet about 2 kilometers across with a mass of 4 × 1012 kg. Assume that it crashes into Earth at a speed of 30,000 meters per second (about 67,000 miles per hour). a. What is the total energy of the impact, in joules? (Hint: The kinetic energy formula tells us that the impact energy in joules will be 1 × m × v2, where 2 m is the comet’s mass in kilograms and v is its speed in meters per second.) b. A 1-megaton nuclear explosion releases about 4 × 1015 joules of energy. How many such nuclear bombs would it take to release as much energy as the comet impact? c. Based on your answers, comment on the degree of devastation the comet might cause.arrow_forward
- I need the answer for question 4arrow_forwardPlease answer the question and subquestions completely! This is one whole question which has subquestions! According to the official Bartleby guidelines, each question can have up to two subquestions! Thank you! 1) Use Kepler's Law to find the time (in Earth’s years) for Mars to orbit the Sun if the radius of Mars’ orbit is 1.5 times the radius of Earth's orbit. 1.8 2.8 3.4 4.2 A) The mass of Mars is about 1/10 the mass of Earth. Its diameter is about 1/2 the diameter of Earth. What is the gravitational acceleration at the surface of Mars? 9.8 m/s2 2.0 m/s2 3.9 m/s2 4.9 m/s2 none of these B) A 9.0 x 10 3 kg satellite orbits the Earth at the distance of 2.56 x 10 7 m from Earth’s surface. What is its period? 1.1 x 10 4 s 4.1 x 10 4 s 5.7 x 10 4 s 1.5 x 10 5 sarrow_forwardExplain what is meant by the distance ladder in astronomy. Describe briefly how each “rung” of the distance ladder is calibrated so that a reliable measure of distance can be obtained using each of the methods. State clearly the range of distances that can be measured by each method that makes up the distance ladder.arrow_forward
- 2arrow_forwardconsider plutos diameter and mass. (2374)km & (1.303E22kg) and day which is 6.4 dayz long. FIND: 1. please elaborate how would you get the answer to the escappe vel0city from plut0. 2. we would need to find the minimum energy required for an aircraft or ship of some sort with mass (525kg) to escape this planet.. 3. we would also need to find the t0tal energy for a complete orbit around the planet with an airship with a same mass (525) and an altitude of 224 kmarrow_forwardPlease please solve accurate and exact answer please sir it's very important pleasearrow_forward
- O odysseyware A Ector County Independent Scho ector owschools.com/owsoo/studentAssignment/index?eh=785050194 I Other bool LEARN MESSAGE HELP SIGN OUT Assignment - 12. Quiz 2 ASSIGNMENTS COURSES SECTION I o 1 QUESTION 17 oF 20 Attempt 1 of 1 11 12 13 14 15 16 17 18 19 20 >> The acceleration due to gravity on Mars is less than that on Earth. On Mars, a person will weigh than on Earth. the same less more NEXT QUESTION O ASK FOR HELP TURN IT IN us v O 12:29 中 o8。arrow_forwardPlease explain in full detail as I am trying to understand this concept! thank you! a. Sketch a diagram including Earth, Sun, and Mars, with attention to scale of distance (Mars is about 1.5 AU from the Sun) showing a faster trajectory from Earth to Mars than the minimal energy trajectory discussed in the lecture. b. Without doing a calculation, how would the arrival velocity of the spacecraft at Mars for the case in (a) compare to the spacecraft arrival in the class example? The lecture example had the spacecraft arriving at Mars with a velocity of 22.49 km/sec. c. The average velocity of Mars in orbit around the Sun is 24.08 km/sec. Comment on the trade-offs between trajectories, arrival velocities and velocity changes (delta V) required to enter an orbit around Mars.arrow_forwardSuppose there were a planet in our Solar System orbiting at a distance of 0.5 AU from theSun, and having ten times the mass and four times the radius of Earth. For reference, theEarth has a mass of 5.97 × 1024 kg and a radius of 6,378 km a) Calculate the density of this hypothetical planet.b) Based on your answer from part a), what do you think this planet would be made of?Explain your reasoning.c) Do this planet’s properties agree with the condensation theory for the formation of ourSolar System? Why or why not?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY