EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 29QLP
Describe the importance of controlling roll speeds, roll gaps, temperature, and other process variables in a tandem-rolling operation, as shown in Fig. 13.11. Explain how you would go about determining the optimum distance between the stands.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. A round wire made from 1020 carbon steel is being drawn from a diameter of 12.5 mm to 9.5 mm in a draw die of 10°. For a coefficient of friction of 0.15, calculate required drawing force.
2. How would the extrusion process be effected if the die angle is increased?
A 10 mm thick plate is rolled to 7 mm thick in a rolling mill using 1000 mm diameter rigid rolls. The neutral point is located at an angle of 0.3 times the bite angle from the exit. What will be the thickness of the plate at the neutral point.
Question 6
6.1 A round wire made from 1020 carbon steel is being drawn from a diameter of 12.5 mm to
9.5 mm in a draw die of 10°. For a coefficient of friction of 0.15, calculate required drawing
force.
6.2 How would the extrusion process be effected if the die angle is increased?
Chapter 13 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 13 - What is the difference between a plate and a...Ch. 13 - Define roll gap, neutral point, and draft.Ch. 13 - What factors contribute to spreading in flat...Ch. 13 - What is forward slip? Why is it important?Ch. 13 - Describe the types of deflections that rolls...Ch. 13 - Describe the difference between a bloom, a slab,...Ch. 13 - Why may roller leveling be a necessary operation?Ch. 13 - List the defects commonly observed in flat...Ch. 13 - What are the advantages of tandem rolling? Pack...Ch. 13 - How are seamless tubes produced?
Ch. 13 - Why is the surface finish of a rolled product...Ch. 13 - What is a Sendzimir mill? What are its important...Ch. 13 - What is the Mannesmann process? How is it...Ch. 13 - Describe ring rolling. Is there a neutral plane in...Ch. 13 - How is back tension generated?Ch. 13 - Explain why the rolling process was invented and...Ch. 13 - Flat rolling reduces the thickness of plates and...Ch. 13 - Explain how the residual stress patterns shown in...Ch. 13 - Explain whether it would be practical to apply the...Ch. 13 - Describe the factors that influence the magnitude...Ch. 13 - Explain how you would go about applying front and...Ch. 13 - What typically is done to make sure that the...Ch. 13 - Make a list of parts that can be made by (a) shape...Ch. 13 - Describe the methods by which roll flattening can...Ch. 13 - It was stated that spreading in flat rolling...Ch. 13 - Flat rolling can be carried out by front tension...Ch. 13 - Explain the consequence of applying too high a...Ch. 13 - Note in Fig. 13.3f that the driven rolls (powered...Ch. 13 - Describe the importance of controlling roll...Ch. 13 - In Fig. 13.9a, if you remove the top compressive...Ch. 13 - Name several products that can be made by each of...Ch. 13 - List the possible consequences of rolling at (a)...Ch. 13 - It is known that in thread rolling, as illustrated...Ch. 13 - If a rolling mill encounters chatter, what process...Ch. 13 - Can the forward slip ever become negative? Why or...Ch. 13 - In Example 13.1, calculate the roll force and the...Ch. 13 - Calculate the individual drafts in each of the...Ch. 13 - Estimate the roll force, F, and the torque for an...Ch. 13 - A rolling operation takes place under the...Ch. 13 - Estimate the roll force and power for annealed...Ch. 13 - A flat-rolling operation is being carried out...Ch. 13 - A simple sketch of a four-high mill stand is shown...Ch. 13 - Obtain a piece of soft, round rubber eraser, such...Ch. 13 - If you repeat the experiment in Problem 13.45 with...Ch. 13 - Design a set of rolls to produce cross-sections...Ch. 13 - Design an experimental procedure for determining...Ch. 13 - Derive an expression for the thickest workpiece...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider the extrusion of a cylindrical billet. Assume the billet to have a length of 0.3m and a diameter of 0.15m. This is extruded into a cylindrical product that is 0.03m in diameter and 7.5m long (a reduction ratio of 25). Neglecting the areas on the two ends, compute the ratio between the product surface area (wraparound cylinder) and the surface area of the starting billet. How would this ratio change if the product were a square with the same cross-sectional area as that of the 0.03m diameter circle?arrow_forward4) Make a summary of the types of defects found in sheet-metal forming processes, and include brief comments on the reason(s) for each defect.arrow_forwardA low-carbon steel plate is 300 mm wide and 25 mm thick. It is reduced in one pass in a two-high rolling mill to a thickness of 20 mm. Roll radius = 300 mm, and roll speed = 30 m/min. Strength coefficient = 500 MPa, and strain hardening exponent = 0.25. Determine the (a) roll force, (b) roll torque, and (c) power required to perform this operation.arrow_forward
- Compare hot and cold rolling products in terms of surface quality, mechanical properties, force required for rolling.arrow_forwardA plate that is 260 mm wide and 27 mm thick is to be reduced in a single pass in a two‑high rolling mill to a thickness of 22 mm. The roll has a radius = 510 mm, and its speed = 25 m/min. The work material has a strength coefficient = 235 MPa and a strain hardening exponent = 0.21. Determine (a) roll force, (b) roll torque, and (c) power required to accomplish this operationarrow_forwardA plate that is 250 mm wide and 25 mm thick is to be reduced in a single pass in a two-high rolling mill to a thickness of 20 mm. The roll has a radius = 500 mm, and its speed = 30 m/min. The work material has a strength coefficient = 240 MPa and a strain hardening exponent = 0.2. Determine (a)roll force, (b) roll torque, and (c) power required to accomplish this .operation 1365 N & 529865 N-m & 452 W O 500250 N & 12005 N-m & 2456 W O 71254632 N & 135674 N-m & 12053 W O 1851829 N & 46296 N-m & 92,591 W Oarrow_forward
- please answer to both of these parts of the question, thanks (a) Explain the advantage of corner radii of punch and die in Sheet Metal Drawing Process. (b) Explain the disadvantages of Tube Drawing process in which mandrel is not used.arrow_forward2. A 300 mm wide, 40 mm thick plate is reduced to 30 mm thickness in one pass by hot rolling. Roll diameter is 200 mm and entrance speed is 16 m/min. Material constants C and m at the process temperature are given as 50 MPa and 0.05 respectively. Determine: a. The minimum friction coefficient required to make this operation possible, b. Assuming that the minimum level of friction is maintained, calculate the exit velocity of the plate by considering there is no widening, c. Calculate the force and power requirement to apply the pass.arrow_forwardNeed neat and clean handwritten solution explaining every steps. Do not give copied solution from chegg else you will get downvotearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License