
Concept explainers
Calculate the impedance

Answer to Problem 25P
The impedance
Explanation of Solution
Given data:
Refer to Figure 13.94 in the textbook for the circuit with coupled coils.
The coupling co-efficient is 0.5.
Calculation:
Consider the expression for the mutual inductance.
Substitute 0.5 for k, 1 H for
From Figure 13.94, the value of
Consider the expression for the inductive reactance.
Substitute 1 H for L and
Substitute 2 H for L and
Consider the expression for the capacitive reactance.
Substitute 0.5 F for C and
Modify the Figure 13.94 by transforming the time-domain circuit with coupled-coils to frequency domain of the circuit with coupled-coil. The frequency domain equivalent circuit is shown in Figure 1.
Write the expression for the impedance
Consider the expression for the reflected impedance
Substitute 2 for
Substitute
Simplify the Equation as follows.
Write the expression for the current
Substitute
The value of current
Convert the current from polar form to time domain form.
MATLAB code:
The MATLAB code using equations (3), (4) and (5) is,
M=0.5;
R2=3;
w=2;
L2=1;
ZL=4*j;
ZR=(w^2 * M^2)/(R2 + j*w*L2 + ZL);
Zab= (2-1*j)*(1+2*j+ZR)/(2-j+1+2*j+ZR)
Io=12/(Zab+4)
Then the MATLAB output is,
Zab = 1.4354 + 0.4639i
Io = 2.1918 - 0.1871i
Form the MATLAB output, impedance
Form the MATLAB output, current
The output is satisfied with analytical solution.
Conclusion:
Thus, the impedance
Want to see more full solutions like this?
Chapter 13 Solutions
Fundamentals of Electric Circuits
- A professor teaches two sections of a course: • 70% of students are in Section 1, and 30% are in Section 2. • In Section 1, 90% of students pass the final exam. • In Section 2, 80% of students pass the final exam. A student is randomly selected. a) Draw a tree diagram to represent this situation. b) What is the probability that the selected student passes the exam? c) Given that a student failed, what is the probability they were from Section 1?arrow_forward.. A factory has two machines, A and B. Machine A produces 60% of the parts, while Machine B produces 40%. Machine A produces defective parts 5% of the time, while Machine B produces defective parts 10% of the time. A randomly selected part from production is inspected. a) Draw a tree diagram to represent the probability of getting a defective part. b) What is the probability that a randomly selected part is defective? c) If a part is found to be defective, what is the probability it came from Machine A?arrow_forwardA Factory produces light bulbs from two different machines: Machine A and Machine B. The probability that a randomly selected light bulbs is from Machine A is 60%, and the probability that a light bulb is defective is 5%. Suppose that probability that a light bulb is defective given that it was made by Machine A is 0.05. Similarly, the probability that a light bulb is defective given that it was made by Machine B is 0.03. Are the events “the light bulb is from Machine A” and “the light bulb is defective” independent?arrow_forward
- 3 (10pts). A Factory produces light bulbs from two different machines: Machine A and Machine B. The probability that a randomly selected light bulbs is from Machine A is 60%, and the probability that a light bulb is defective is 5%. Suppose that probability that a light bulb is defective given that it was made by Machine A is 0.05. Similarly, the probability that a light bulb is defective given that it was made by Machine B is 0.03. Are the events "the light bulb is from Machine A" and "the light bulb is defective" independent?arrow_forwardPlease see the followinggn imagearrow_forwardImage is attachedarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





