PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
2nd Edition
ISBN: 9781285074788
Author: Ball
Publisher: CENGAGE L
bartleby

Videos

Question
Book Icon
Chapter 13, Problem 13.53E
Interpretation Introduction

Interpretation:

The characters of the f orbitals in an octahedral environment are to be predicted.

Concept introduction:

The characters of the irreducible representations of the given point group can be multiplied by each other. The only condition is the characters of the same symmetry operations are multiplied together. The multiplication of the characters is commutative.

The great orthogonality theorem for the reducible representation can be represented as,

aΓ=1hallclassesofpointgroupNχΓχlinearcombo

Where,

aΓ is the number of times the irreducible representation appears in a linear combination.

h is the order of the group.

χΓ is the character of the class of the irreducible representation.

χlinearcombo is the character of the class linear combination.

N is the number of symmetry operations.

Expert Solution & Answer
Check Mark

Answer to Problem 13.53E

The characters of the f orbitals in an octahedral environment are A2uT1uT2u.

Explanation of Solution

The symmetry elements present in octahedral symmetry are, E, C3, C2, C4, C2', i, S4, S6, σh and σd.

From Rh(3) character table the formula to calculate the value of χC2 is,

χC2=1+2cosθ+2cos2θ+2cos3θ …(1)

Substitute the value of θ=180° in equation (1).

χC2=1+2cos180°+2cos2(180°)+2cos3(180°)=12+22=1

From Rh(3) character table the formula to calculate the value of χC3 is,

χC3=1+2cosθ+2cos2θ+2cos3θ …(1)

Substitute the value of θ=120° in equation (1).

χC3=1+2cos120°+2cos2(120°)+2cos3(120°)=111+2=1

From Rh(3) character table the formula to calculate the value of χC4 is,

χC4=1+2cosθ+2cos2θ+2cos3θ …(1)

Substitute the value of θ=90° in equation (1).

χC4=1+2cos90°+2cos2(90°)+2cos3(90°)=1+02+0=1

From Rh(3) character table the formula to calculate the value of χS4 is,

χS4=1+2cosθ2cos2θ+2cos3θ …(2)

Substitute the value of θ=90° in equation (2).

χS4=1+2cos90°2cos2(90°)+2cos3(90°)=1+0+2+0=1

From Rh(3) character table the formula to calculate the value of χS6 is,

χS6=1+2cosθ2cos2θ+2cos3θ …(2)

Substitute the value of θ=60° in equation (2).

χS6=1+2cos60°2cos2(60°)+2cos3(60°)=1+1+12=1

Therefore, the character table for f orbital in octahedral environment is shown below.

OhE8C33C26C46C2'i8S63σh6S46σd7111171111

The great orthogonality theorem for the reducible representation can be represented as,

aΓ=1hallclassesofpointgroupNχΓχlinearcombo

Where,

aΓ is the number of times the irreducible representation appears in a linear combination.

h is the order of the group.

χΓ is the character of the class of the irreducible representation.

χlinearcombo is the character of the class linear combination.

N is the number of symmetry operations.

The order of the group is 48.

Substitute the value of order of the group, character of the class of the irreducible representation from character table of Oh point group, character of the class linear combination and number of symmetry operations for A1g.

aA1g=148[(117)+(811)+(311)+(611)+(611)+(117)+(811)+(311)+(611)+(611)]=148[0]=0

The number of times the irreducible representation for A1g appears in a linear combination is 0.

Similarly, for A2g, substitute the value of order of the group, character of the class of the irreducible representation from character table of Oh point group, character of the class linear combination and number of symmetry operations.

aA2g=148[(117)+(811)+(311)+(611)+(611)+(117)+(811)+(311)+(611)+(611)]=0

The number of times the irreducible representation for A2g appears in a linear combination is 0.

Similarly, for Eg, substitute the value of order of the group, character of the class of the irreducible representation from character table of Oh point group, character of the class linear combination and number of symmetry operations.

aEg=148[(127)+(811)+(321)+(601)+(601)+(127)+(811)+(321)+(601)+(601)]=0

The number of times the irreducible representation for Eg appears in a linear combination is 0.

Similarly, for T1g, substitute the value of order of the group, character of the class of the irreducible representation from character table of Oh point group, character of the class linear combination and number of symmetry operations.

aT1g=148[(137)+(801)+(311)+(611)+(611)+(137)+(801)+(311)+(611)+(611)]=0

The number of times the irreducible representation for T1g appears in a linear combination is 0.

Similarly, for T2g, substitute the value of order of the group, character of the class of the irreducible representation from character table of Oh point group, character of the class linear combination and number of symmetry operations.

aT2g=148[(137)+(801)+(311)+(611)+(611)+(137)+(801)+(311)+(611)+(611)]=0

The number of times the irreducible representation for T2g appears in a linear combination is 0.

Similarly, for A1u, substitute the value of order of the group, character of the class of the irreducible representation from character table of Oh point group, character of the class linear combination and number of symmetry operations.

aTA1u=148[(117)+(811)+(311)+(611)+(611)+(117)+(811)+(311)+(611)+(611)]=0

The number of times the irreducible representation for A1u appears in a linear combination is 0.

Similarly, for A2u, substitute the value of order of the group, character of the class of the irreducible representation from character table of Oh point group, character of the class linear combination and number of symmetry operations.

aTA2u=148[(117)+(811)+(311)+(611)+(611)+(117)+(811)+(311)+(611)+(611)]=148[48]=1

The number of times the irreducible representation for A2u appears in a linear combination is 1.

Similarly, for Eu, substitute the value of order of the group, character of the class of the irreducible representation from character table of Oh point group, character of the class linear combination and number of symmetry operations.

aEu=148[(127)+(811)+(321)+(601)+(601)+(127)+(811)+(321)+(601)+(601)]=0

The number of times the irreducible representation for Eu appears in a linear combination is 0.

Similarly, for T1u, substitute the value of order of the group, character of the class of the irreducible representation from character table of Oh point group, character of the class linear combination and number of symmetry operations.

aT1u=148[(137)+(801)+(311)+(611)+(611)+(137)+(801)+(311)+(611)+(611)]=148[48]=1

The number of times the irreducible representation for T1u appears in a linear combination is 1.

Similarly, for T2u, substitute the value of order of the group, character of the class of the irreducible representation from character table of Oh point group, character of the class linear combination and number of symmetry operations.

aT1u=148[(137)+(801)+(311)+(611)+(611)+(137)+(801)+(311)+(611)+(611)]=148[48]=1

The number of times the irreducible representation for T2u appears in a linear combination is 1.

Thus, the linear combination is A2uT1uT2u.

Conclusion

The characters of the f orbitals in an octahedral environment are A2uT1uT2u.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①
Do the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.
NGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2

Chapter 13 Solutions

PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.

Ch. 13 - Prob. 13.11ECh. 13 - Prob. 13.12ECh. 13 - Prob. 13.13ECh. 13 - What are the number of classes and the order of...Ch. 13 - Prob. 13.15ECh. 13 - a Show that the C3v point group satisfies the...Ch. 13 - a In the Td point group, an S41 improper rotation...Ch. 13 - Determine which single symmetry operation of the...Ch. 13 - Prob. 13.19ECh. 13 - Prob. 13.20ECh. 13 - Prob. 13.21ECh. 13 - Figure 13.27 shows the structure of the molecule...Ch. 13 - Prob. 13.23ECh. 13 - Identify all the symmetry elements present in the...Ch. 13 - Point groups are called such because all of the...Ch. 13 - Determine the point groups of the following...Ch. 13 - Determine the point group of the following...Ch. 13 - Determine the point groups of the following...Ch. 13 - Determine the point groups of the following...Ch. 13 - Structural isomers can have very different point...Ch. 13 - Structural isomers can have very different point...Ch. 13 - Prob. 13.32ECh. 13 - Identify the point group of the wave functions of...Ch. 13 - Identify the point group of the wave functions of...Ch. 13 - Prob. 13.35ECh. 13 - Determine if the following species have permanent...Ch. 13 - Determine if the following species have permanent...Ch. 13 - Which of the following species will not have...Ch. 13 - Prob. 13.39ECh. 13 - Explain why a molecule with a center of inversion...Ch. 13 - a Unlike methane, bromochlorofluoromethane...Ch. 13 - Prob. 13.42ECh. 13 - Prob. 13.43ECh. 13 - Prob. 13.44ECh. 13 - Show that the irreducible representations of the...Ch. 13 - Show that any two of the irreducible...Ch. 13 - Show that any irreducible representation of these...Ch. 13 - Explain why this proposed irreducible...Ch. 13 - Prob. 13.49ECh. 13 - Prob. 13.50ECh. 13 - Why is it unnecessary to consider whether an...Ch. 13 - Prob. 13.52ECh. 13 - Prob. 13.53ECh. 13 - Prob. 13.54ECh. 13 - Prob. 13.55ECh. 13 - Prob. 13.56ECh. 13 - Prob. 13.57ECh. 13 - Prob. 13.58ECh. 13 - Reduce the following reducible representations...Ch. 13 - Determine the resulting representations for the...Ch. 13 - Prob. 13.61ECh. 13 - Without using the great orthogonality theorem,...Ch. 13 - Assume that you are evaluating the integral of...Ch. 13 - Prob. 13.64ECh. 13 - Assume that x- polarized light can be assigned an...Ch. 13 - Prob. 13.66ECh. 13 - Prob. 13.67ECh. 13 - Prob. 13.68ECh. 13 - Prob. 13.69ECh. 13 - Prob. 13.70ECh. 13 - Construct the symmetry-adapted linear combination...Ch. 13 - Prob. 13.72ECh. 13 - Prob. 13.73ECh. 13 - Prob. 13.74ECh. 13 - Prob. 13.75ECh. 13 - Prob. 13.76ECh. 13 - Prob. 13.77ECh. 13 - Suppose you use p0,p1 and p+1 along with s...Ch. 13 - Show that the individual sp orbitals, as written...Ch. 13 - Prob. 13.80ECh. 13 - What is the rough hybridization of the carbon...Ch. 13 - Determine the symmetry species of the D3h point...Ch. 13 - Determine the D3h symmetry species of the sp3d...Ch. 13 - Prob. 13.84ECh. 13 - In propene CH3CH=CH2, the first carbon has sp3...Ch. 13 - Prob. 13.87ECh. 13 - Prob. 13.88ECh. 13 - Prob. 13.89E
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Physical Chemistry
    Chemistry
    ISBN:9781133958437
    Author:Ball, David W. (david Warren), BAER, Tomas
    Publisher:Wadsworth Cengage Learning,
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Group Theory - Learn like Expert with 3D animation | Introduction for Beginners | ONE Chemistry; Author: One Chemistry;https://www.youtube.com/watch?v=Lz2ih8fkgDs;License: Standard YouTube License, CC-BY