EBK INTRODUCTION TO CHEMICAL ENGINEERIN
8th Edition
ISBN: 9781259878091
Author: SMITH
Publisher: MCGRAW HILL BOOK COMPANY
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 13.38P
(a)
Interpretation Introduction
Interpretation:
The equations 13.43 and 13.44 are shown to be obtained from the given conditions for a binary system.
Concept Introduction:
For a binary system, equation 10.15 to be used is:
ˉM1=M+x2dMdx1 .......(1)
For a binary system, equation 10.16 to be used is:
ˉM2=M−x1dMdx1 .......(2)
Equation 13.42 to be used is:
GEx1x2RT=A12A21A12x1+A21x2 .......(3)
(b)
Interpretation Introduction
Interpretation:
The equations 13.43 and 13.44 are shown to be obtained from the given conditions for a binary system.
Concept Introduction:
Equation 13.42 to be used is:
GEx1x2RT=A12A21A12x1+A21x2 .......(3)
Equation 13.7 to be used is:
lnγi=[∂(nGE/RT)∂ni]T,P,nj .......(9)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
None
Assignment 2.
Example. The diffusivity of the vapour of a volatile liquid in air can be conveniently
determined by Winkelmann's method in which liquid is contained in a narrow diameter
vertical tube, maintained at a constant temperature, and an air stream is passed over
the top of the tube sufficiently rapidly to ensure that the partial pressure of the vapour
there remains approximately zero. On the assumption that the vapour is transferred
from the surface of the liquid to the air stream by molecular diffusion, calculate the
diffusivity of carbon tetrachloride vapour in air at 321 K and atmospheric pressure from
the following experimental data:
Time from commencement
of experiment, (t x1 03 s)
Liquid level (mm)
0.0
0.0
1.6
2.5
11.1
12.9
27.4
23-2
80-2
43.9
117.5
54-7
168.6
67.0
199.7
73-8
289-3
90-3
383-1
104.8
The vapour pressure of carbon tetrachloride at 321 K is 37.6 kN/m² and the density of
the liquid is 1540 kg/m³. Take the kilogram molecular volume as 22.4 m³.
Please.... please, provide me with full calculation (more details) because this question I sent it previously but I did not receive a good result yet.
Chapter 13 Solutions
EBK INTRODUCTION TO CHEMICAL ENGINEERIN
Ch. 13 - Prob. 13.1PCh. 13 - Assuming Raoult’s law to be valid, prepare a Pxy...Ch. 13 - Assuming Raoult’s law to apply to the system...Ch. 13 - Prob. 13.4PCh. 13 - Prove: An equilibrium liquid/vapor system...Ch. 13 - Of the following binary liquid/vapor systems,...Ch. 13 - A single-stage liquid/vapor separation for the...Ch. 13 - Do all four parts of Prob. 13.7, and compare the...Ch. 13 - A mixture containing equimolar amounts of...Ch. 13 - Do all four parts of Prob. 13.9. and compare the...
Ch. 13 - A binary mixture of mole fraction z1is flashed to...Ch. 13 - Humidity, relating to the quantity of moisture in...Ch. 13 - A concentrated binary solution containing mostly...Ch. 13 - Air, even more than carbon dioxide, is inexpensive...Ch. 13 - Helium-laced gases are used as breathing media for...Ch. 13 - A binary system of species 1 and 2 consists of...Ch. 13 - For the system ethyl ethanoate(l)/n-heptane(2) at...Ch. 13 - A liquid mixture of cyclohexanone(1)/phenol(2) for...Ch. 13 - A binary system of species 1 and 2 consists of...Ch. 13 - For the acetone(l)/methanol(2) system, a vapor...Ch. 13 - The following is a rule of thumb: For a binary...Ch. 13 - A process stream contains light species 1 and...Ch. 13 - If a system exhibits VLE, at least one of the...Ch. 13 - Flash calculations are simpler for binary systems...Ch. 13 - Prob. 13.25PCh. 13 - (a) A feed containing equimolar amounts of...Ch. 13 - A binary mixture of benzene(1) and toluene(2) is...Ch. 13 - Ten (10) kmolhr-1 of hydrogen sulfide gas is...Ch. 13 - Physiological studies show the neutral comfort...Ch. 13 - Prob. 13.30PCh. 13 - Prob. 13.31PCh. 13 - Prob. 13.32PCh. 13 - If Eq. (13.24) is valid for isothermal VLE in a...Ch. 13 - Prob. 13.34PCh. 13 - The excess Gibbs energy for binary systems...Ch. 13 - For the ethanol(l )/chloroform(2) system at 50°C,...Ch. 13 - VLE data for methyl tert-butyl...Ch. 13 - Prob. 13.38PCh. 13 - Prob. 13.39PCh. 13 - Following are VLE data for the system...Ch. 13 - Prob. 13.41PCh. 13 - Prob. 13.42PCh. 13 - Problems 13.43 through 13.54 require parameter...Ch. 13 - Problems 13.43 through 13.54 require parameter...Ch. 13 - Prob. 13.45PCh. 13 - Problems 13.43 through 13.54 require parameter...Ch. 13 - Prob. 13.47PCh. 13 - Prob. 13.48PCh. 13 - Prob. 13.49PCh. 13 - Prob. 13.50PCh. 13 - Problems 13.43 through 13.54 require parameter...Ch. 13 - Prob. 13.52PCh. 13 - The following expressions have been reported for...Ch. 13 - Possible correlating equations for In 1 in a...Ch. 13 - Prob. 13.57PCh. 13 - Binary VLE data are commonly measured at constant...Ch. 13 - Consider the following model for GE/RT of a binary...Ch. 13 - A breathalyzer measures volume-% ethanol in gases...Ch. 13 - Table 13.10 gives values of parameters for the...Ch. 13 - Prob. 13.62PCh. 13 - A single P-x1- y1data point is available for a...Ch. 13 - A single P- x1, data point is available for a...Ch. 13 - The excess Gibbs energy for the system...Ch. 13 - Prob. 13.66PCh. 13 - A system formed of methane(l) and a light oil(2)...Ch. 13 - Use Eq. (13.13) to reduce one of the following...Ch. 13 - For one of the following substances, determine...Ch. 13 - Departures from Raoult's law are primarily from...Ch. 13 - The relative volatility a12is commonly used in...Ch. 13 - Prob. 13.74PCh. 13 - Prob. 13.75PCh. 13 - Prob. 13.76P
Knowledge Booster
Similar questions
- Sulphur dioxide is absorbed in a packed bed absorption tower with 25 mm ceramic Intalox saddles (packing factor of 300 m) using water solvent in a countercurrent arrangement. The feed gas contains 0.05 kmol SO-/kmol air, and it is desired to reduce the SO, content of exit gas to 3% of its inlet concentration. The gas flow rate is 0.067 kmol's of air, and the water rate is 3,08 kmol/s. The equilibrium relation is given by: Y= 30 X. Calculate: (a) number of transfer units; (b) column diameter, (c) the height of the packing. Assuming the entire process is gas-film controlled. Design for a pressure drop of 21 mm H-O/m packing. P = 1.21 kg/m: p = 1000 kg/m³: д, = 0.018×10-3 N.s/m² = 10³ N./m²; D₁ =1.45x10 m³/s; D₁ = 1.7x10m²/s. H=0.011, (Sc)( 0.305 111 De 2 3.05) 035 H₁ = 0.305 (Sc) K (305)arrow_forwardم G ||| ٩٥٦٤:٠٣ رجوع ويسترن يونيون Western Union \\WU ۱۷۱ 1. LTE2 ملاحظة مهمة : عند استلام الاموال، يجب على المرسل ادخال نفس اسمك المسجل باللغة الانجليزية داخل التطبيق لاتمام العملية. تأكد من مشاركة هذا الاسم (AWWA ABD) مع المرسل . \\WU ارسل واستلم حوالتك من وإلى جميع أنحاء العالم بثواني. ارسال اموال استلام اموال تاريخ المعاملات قائمة المستلمين المسجلين احتساب رسوم التحويل =arrow_forwardPlease.... please, provide me with full calculation (more details) because this question I sent it previously but I did not receive a good result yet.arrow_forward
- Generalized Machine Theory Attempt ALL Questions. Q1. (a) Explain and illustrate the object of the performance analysis of any type of machine by unified theory. [8M]arrow_forwardP10-21 When the impurity cumene hydroperoxide is present in trace amounts in a cumene feed stream, it can deactivate the silica-alumina catalyst over which cumene is being cracked to form benzene and propy- lene. The following data were taken at 1 atm and 420°C in a differential reactor. The feed consists of cumene and a trace (0.08 mol %) of cumene hydroperoxide (CHP). Benzene in Exit Stream (mol %) 1 (8) 2 1.62 1.31 1.06 0.85 0.56 0.37 0.24 0 50 100 150 200 300 400 500 == (a) Determine the order of decay and the decay constant. (Ans.: kg 4,27 x 10-3 s) (b) As a first approximation (actually a rather good one), we shall neglect the denominator of the cat- alytic rate law and consider the reaction to be first order in cumene. Given that the specific reac- tion rate with respect to cumene is k = 3.8 X 103 mol/kg fresh cat s atm, the molar flow rate of cumene (99.92% cumene, 0.08% CHP) is 200 mol/min, the entering concentration is 0.06 kmol/m³, the catalyst weight is 100 kg, and the…arrow_forwardICG Heterogeneous Catalysis Performance P10-3 t-Butyl alcohol (TBA) is an important octane enhancer that is used to replace lead additives in gasoline [Ind. Eng. Chem. Res., 27, 2224 (1988)]. TBA was produced by the liquid-phase hydration (W) of isobutene (I) over an Amberlyst-15 catalyst. The system is normally a multiphase mixture of hydrocar- bon, water, and solid catalysts. However, the use of cosolvents or excess TBA can achieve reasonable miscibility. The reaction mechanism is believed to be Derive a rate law assuming: I S (P10-3.1) I+S W.S (P10-3.2) WSZ W S+I SE TBA S+S (P10-3.3) TBA SZ TBA + S (P10-3.4) (a) The surface reaction is rate-limiting. (b) The adsorption of isobutene is limiting. (c) The reaction follows Eley-Rideal kinetics I SW TBA S (P10-3.5) and the surface reaction is limiting. (d) Isobutene (1) and water (W) are adsorbed on different sites. T + S₁ W + S₂ W. S₂ TBA is not on the surface, and the surface reaction is rate-limiting. Ans.: TBA=-= [CCW-CTBA/K]…arrow_forward
- of cat- The cat- metric ength wate)? of the nds? the rate law is h. Redo parts (b) and (c) for these conditions. P10-20, The vapor-phase cracking of gas-oil in Example 10-6 is carried out over a different catalyst, for which would you recommend? with '=5x10-5 kmol kg-cat-s-atm (a) Assuming that you can vary the entering pressure and gas velocity, what operating conditions (b) What could go wrong with the conditions you chose? Now assume the decay law is da dt = kpacite with kp=100 dm³ at 400°C mol-s where the concentration, Cenke, in mol/dm³, can be determined from a stoichiometric table. (c) For a temperature of 400°C and a reactor height of 15 m, what gas velocity do you recommend? (d) The reaction is now to be carried in an STTR 15 m high and 1.5 m in diameter. The gas velocity is 2.5 m/s. You can operate in the temperature range between 100 and 500°C. What temperature do you choose, and what is the corresponding conversion? (e) What would the temperature-time trajectory look like…arrow_forwardi need perfect solution with more detailsarrow_forwardGeneralized Machine Theory Attempt ALL Questions. Q1. (a) Explain and illustrate the object of the performance analysis of any type of machine by unified theory. [8M]arrow_forward
- i need perfect resultsarrow_forwardQ2/ Power-law film flow. Consider the film flow of a power-law fluid with parameters к and n and density p down a plate inclined at angle with respect to the horizontal. If the film thickness is H: a. Derive an expression for the resulting velocity profile v as a function of y (distance from the plate), H, K, n, g, p, and b. Sketch three representative velocity profiles (each having, for simplicity, the same maximum velocity, which in practice would mean different values of к), for n 1, and comment briefly on the important features. C. Derive an expression for the volumetric flow rate of the liquid per unit width of the plate. Check your answer against the known expression for a Newtonian fluid: Q= H3pg sin 37arrow_forwardQ8/ Non-Newtonian fluid characterization. A non-Newtonian liquid is tested by placing it between the two concentric cylinders of a viscometer. Since the gap h between the two surfaces is very small, they may be approximated by two planes as shown in Fig.3, one surface being stationary and the other moving. The instrument essentially measures the shear stresses t (Tx)y-h needed to move the upper plate at a variety of steady velocities V. Fig.3 Opposed surfaces of a viscometer. Explain in detail how you would discover the model to which the liquid conforms-it may be either a power-law fluid or a Bingham plastic and how you could determine from the data the two parameters (such as к and n, or to and n) for either model. Use the symbols for the rate of strain dvx/dy.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The