EBK INTRODUCTION TO CHEMICAL ENGINEERIN
EBK INTRODUCTION TO CHEMICAL ENGINEERIN
8th Edition
ISBN: 9781259878091
Author: SMITH
Publisher: MCGRAW HILL BOOK COMPANY
bartleby

Videos

Question
Book Icon
Chapter 13, Problem 13.49P

(a)

Interpretation Introduction

Interpretation:

The bubble point temperature for any one of the given binary systems in table 13.10 is to be calculated using Wilson equation.

Concept Introduction:

Antoine equation is used to determine the vapor pressure of any substance at the given temperature by the equation:

  lnPsat(kPa)=AB(TC)+C .......(1)

Here, A, B and C are the constants specific for a substance given in table B.2 of appendix B.

Equation 13.19

to be used for Modified Raoult’s law is:

  yiP=xiγiPisat .......(2)

The Bubble point pressure for a binary system in vapor/liquid equilibrium is defined as the pressure where first bubble of vapor appears which is in equilibrium with the liquid present in the system. The equation which defines this pressure at this point is:

  PBUBL=x1γ1P1sat+x2γ2P2sat .......(3)

Wilson equations to be used are:

  lnγ1=ln(x1+x2Λ 12)+x2( Λ 12 x 1 + x 2 Λ 12 Λ 21 x 2 + x 1 Λ 21 )lnγ2=ln(x2+x1Λ 21)+x1( Λ 12 x 1 + x 2 Λ 12 Λ 21 x 2 + x 1 Λ 21 ) .......(4)

Here, the parameters Λ12 and Λ21

are calculated by the formula:

  Λ12=V2V1expa 12RTΛ21=V1V2expa 21RT .......(5)

Where, V1, V2, a12 and a21 are the Wilson equation parameters given in table 13.10 for binary systems.

(a)

Expert Solution
Check Mark

Answer to Problem 13.49P

The bubble point temperature for 1Propanol(1)/Water(2)

using Wilson equation is:

  TBUBL=87.95C

Explanation of Solution

Given information:

The pressure at which the bubble point temperature is to be calculated is 101.33kPa . The composition of the liquid phase at this point is given as x1=0.3 .

Wilson equation parameters are given in Table 13.10 as shown below:

EBK INTRODUCTION TO CHEMICAL ENGINEERIN, Chapter 13, Problem 13.49P , additional homework tip  1

The binary system for which the bubble point temperature will be calculated is 1Propanol(1)/Water(2) at P=101.33kPa

. The liquid phase composition is:

  x1=0.3x2=0.7

From table B.2 of appendix B, the Antoine equation constants for 1Propanol(1) and Water(2)

are:

  A1=16.1154B1=3483.67C1=205.807A2=16.3872B2=3885.70C2=230.170

Now, use equation (1) to calculate the vapor pressure of 1Propanol(1) and Water(2) for bubble point temperature TC

as:

  lnP1sat=16.11543483.67(T)+205.807P1sat=e( 16.1154 3483.67 ( T )+205.807 )lnP2sat=16.38723885.70(T)+230.170P2sat=e( 16.3872 3885.70 ( T )+230.170 )

From table 13.10, the parameters needed for 1Propanol(1) and Water(2)

to be used in Wilson equation are:

  V1=75.14 cm3/molV2=18.07 cm3/mola12=775.48 cal/mola21=1351.90 cal/mol

The value of universal gas constant to be used is,

  R=1.9859 cal/(molK)

Now, use equation (5) to calculate the values of Λ12 and Λ21

as:

  Λ12=V2V1expa 12RT=18.07 cm 3 mol75.14 cm 3 molexp775.48 cal mol( 1.9859 cal molK )( T+273.15 K)=(0.2405)exp390.493( T+273.15)Λ21=V1V2expa 21RT=75.14 cm 3 mol18.07 cm 3 molexp1351.90 cal mol( 1.9859 cal molK )( T+273.15 K)=(4.1583)exp680.749( T+273.15)

Now, use these values of Λ12 and Λ21 along with the values of x1 and x2 and calculate the values of γ1 and γ2

using equations set (4) as:

γ 1 =exp[ ln( x 1 + x 2 Λ 12 )+ x 2 ( Λ 12 x 1 + x 2 Λ 12 Λ 21 x 2 + x 1 Λ 21 ) ]

=exp[ ln( 0.3+0.7( ( 0.2405 )exp 390.493 ( T+273.15 ) ) )+ 0.7( ( 0.2405 )exp 390.493 ( T+273.15 ) 0.3+0.7( ( 0.2405 )exp 390.493 ( T+273.15 ) ) ( 4.1583 )exp 680.749 ( T+273.15 ) 0.7+0.3( ( 4.1583 )exp 680.749 ( T+273.15 ) ) ) ]

γ 2 =exp[ ln( x 2 + x 1 Λ 21 )+ x 1 ( Λ 12 x 1 + x 2 Λ 12 Λ 21 x 2 + x 1 Λ 21 ) ]

=exp[ ln( 0.7+0.3( ( 0.2405 )exp 390.493 ( T+273.15 ) ) )+ 0.3( ( 0.2405 )exp 390.493 ( T+273.15 ) 0.3+0.7( ( 0.2405 )exp 390.493 ( T+273.15 ) ) ( 4.1583 )exp 680.749 ( T+273.15 ) 0.7+0.3( ( 4.1583 )exp 680.749 ( T+273.15 ) ) ) ]

Now, use the Modified Raoult’s law equation to calculate the pressure at the given value of x1

using the below mentioned formula as:

  P=x1γ1P1sat+x2γ2P2sat

At x1=0, P=P2sat and at x1=1, P=P1sat .

Make an initial guess for T as Tguess=333.15 K and using iterative method and the condition to stop the iteration as P=101.33 kPa, find TBUBL for the given value of x1

as:

  TBUBL=87.95C

(b)

Interpretation Introduction

Interpretation:

The dew point temperature for any one of the given binary systems in table 13.10 is to be calculated using Wilson equation.

Concept Introduction:

Equation 13.19

to be used for Modified Raoult’s law is:

  yiP=xiγiPisat .......(2)

Wilson equations to be used are:

  lnγ1=ln(x1+x2Λ 12)+x2( Λ 12 x 1 + x 2 Λ 12 Λ 21 x 2 + x 1 Λ 21 )lnγ2=ln(x2+x1Λ 21)+x1( Λ 12 x 1 + x 2 Λ 12 Λ 21 x 2 + x 1 Λ 21 ) .......(4)

Here, the parameters Λ12 and Λ21

are calculated by the formula:

  Λ12=V2V1expa 12RTΛ21=V1V2expa 21RT .......(5)

Where, V1, V2, a12 and a21 are the Wilson equation parameters given in table 13.10 for binary systems.

The Dew point pressure for a binary system in vapor/liquid equilibrium is defined as the pressure where first drop of liquid appears which is in equilibrium with the vapor present in the system at a particular temperature. The equation that defines this pressure at this point is:

  PDEW=1y1γ1P1 sat+y2γ2P2 sat .......(6)

(b)

Expert Solution
Check Mark

Answer to Problem 13.49P

The dew point temperature for 1Propanol(1)/Water(2)

using Wilson equation is:

  TDEW=91.13C

Explanation of Solution

Given information:

The pressure at which the bubble point temperature is to be calculated is 101.33kPa . The composition of the vapor phase at this point is given as y1=0.3 .

Wilson equation parameters are given in Table 13.10 as shown below:

EBK INTRODUCTION TO CHEMICAL ENGINEERIN, Chapter 13, Problem 13.49P , additional homework tip  2

Use the values of P1sat, and P2sat at TC

as calculated in part (a) as:

  lnP1sat=16.11543483.67(T)+205.807P1sat=e( 16.1154 3483.67 ( T )+205.807 )lnP2sat=16.38723885.70(T)+230.170P2sat=e( 16.3872 3885.70 ( T )+230.170 )

The vapor phase composition is:

  y1=0.3y2=0.7

From table 13.10, the parameters needed for 1Propanol(1) and Water(2)

to be used in Wilson equation are:

  V1=75.14 cm3/molV2=18.07 cm3/mola12=775.48 cal/mola21=1351.90 cal/mol

The value of universal gas constant to be used is,

  R=1.9859 cal/(molK)

Now, use the values of Λ12 and Λ21

as calculated in part (a) as:

  Λ12=V2V1expa 12RT=18.07 cm 3 mol75.14 cm 3 molexp775.48 cal mol( 1.9859 cal molK )( T+273.15 K)=(0.2405)exp390.493( T+273.15)Λ21=V1V2expa 21RT=75.14 cm 3 mol18.07 cm 3 molexp1351.90 cal mol( 1.9859 cal molK )( T+273.15 K)=(4.1583)exp680.749( T+273.15)

Now, use these values of Λ12 and Λ21 along with the values of x1 and x2 and calculate the values of γ1 and γ2

using equations set (4) as:

  γ1=exp[ln( x 1+ x 2 Λ 12)+x2( Λ 12 x 1 + x 2 Λ 12 Λ 21 x 2 + x 1 Λ 21 )]γ2=exp[ln( x 2+ x 1 Λ 21)+x1( Λ 12 x 1 + x 2 Λ 12 Λ 21 x 2 + x 1 Λ 21 )]

Now, use the Modified Raoult’s law equation to calculate the pressure at the guessed value of x1

using the below mentioned formula as:

  P=1y1γ1P1 sat+y2γ2P2 sat

Make an initial guess for T as Tguess=333.15 K and x1 as x1(guess)=0.1 and using iterative method and the condition to stop the iteration as P=101.33 kPa, find TDew for the given value of y1

as:

  TDEW=91.13C

(c)

Interpretation Introduction

Interpretation:

  P,T flash is to be performed for any one of the given binary systems in table 13.10 using Wilson equation.

Concept Introduction:

Equation 13.19

to be used for Modified Raoult’s law is:

  yiP=xiγiPisat .......(2)

The Bubble point pressure for a binary system in vapor/liquid equilibrium is defined as the pressure where first bubble of vapor appears which is in equilibrium with the liquid present in the system. The equation which defines this pressure at this point is:

  PBUBL=x1γ1P1sat+x2γ2P2sat .......(3)

The Dew point pressure for a binary system in vapor/liquid equilibrium is defined as the pressure where first drop of liquid appears which is in equilibrium with the vapor present in the system at a particular temperature. The equation that defines this pressure at this point is:

  PDEW=1y1γ1P1 sat+y2γ2P2 sat .......(6)

  P,T flash calculations are done to find the values of VL, yi, and xi for a system which flashes to produce a two-phase system of vapor and liquid in equilibrium.

The equation for equilibrium ratio, Ki

also known as K-value is:

  Kiyixi .......(7)

Here, yi is the vapor phase mole fraction and xi is the liquid phase mole fraction of species i in the binary system in VLE.

The equations for flash calculations to be used are:

  L+V=1 .......(8)

Here, V is the total moles of vapor and L is the total moles of liquid.

In terms of Ki, the equation relating yi and zi

is:

  yi=ziKi1+V(Ki1) .......(9)

Here, zi is the total mole fraction of component i in the system.

(c)

Expert Solution
Check Mark

Answer to Problem 13.49P

The result of the P,T

flash calculations is:

  V=0.807L=0.193y1=0.35y2=0.65x1=0.09x2=0.91

Explanation of Solution

Given information:

The flash pressure at which the P,T flash is to be calculated is P=101.33 kPa . The total composition of component 1 at this point is given as z1=0.3 .

The condition for the flash temperature for this system is,

  T=12(TBUBL+TDEW)

Wilson equation parameters are given in Table 13.10 as shown below:

EBK INTRODUCTION TO CHEMICAL ENGINEERIN, Chapter 13, Problem 13.49P , additional homework tip  3

Use the values of P1sat, and P2sat at TC

as calculated in part (a) as:

  lnP1sat=16.11543483.67(T)+205.807P1sat=e( 16.1154 3483.67 ( T )+205.807 )lnP2sat=16.38723885.70(T)+230.170P2sat=e( 16.3872 3885.70 ( T )+230.170 )

To perform P,T flash calculations, first find the bubble point and dew point temperature for the binary system 1Propanol(1) and Water(2) at pressure P=101.33 kPa .

To calculate bubble point temperature, let

  z1=x1=0.3z2=x2=0.7

Since, the given conditions are same as in part (a), the calculated value of TBUBL

as in part (a) is:

  TBUBL=87.95C

To calculate dew point temperature, let

  z1=y1=0.3z2=y2=0.7

Since, the given conditions are same as in part (a), the calculated value of TDEW

as in part (a) is:

  TDEW=91.13C

From the given condition of the flash temperature, it is calculated as:

  T=12(T BUBL+T DEW)=12(87.95+91.13)=89.54C

Use this temperature to get the values of P1sat, and P2sat

as:

  P1sat=e( 16.1154 3483.67 ( T )+205.807 )=e( 16.1154 3483.67 ( 89.54 )+205.807 )=75.21 kPaP2sat=e( 16.3872 3885.70 ( T )+230.170 )=e( 16.3872 3885.70 ( 89.54 )+230.170 )=68.95 kPa

Now, use the values of Λ12 and Λ21

as calculated in part (a) as:

  Λ12=(0.2405)exp390.493( T+273.15)=(0.2405)exp390.493( 89.54+273.15)=0.08195Λ21=(4.1583)exp680.749( T+273.15)=(4.1583)exp680.749( 89.54+273.15)=0.6365

Now, use these values of Λ12 and Λ21 along with the guessed values of x1 and x2 and calculate the values of γ1 and γ2

using equations set (4) as:

  γ1=exp[ln( x 1+ x 2 Λ 12)+x2( Λ 12 x 1 + x 2 Λ 12 Λ 21 x 2 + x 1 Λ 21 )]=exp[ln( x 1+ x 2( 0.08195))+x2( ( 0.08195 ) x 1 + x 2 ( 0.08195 ) ( 0.6365 ) x 2 + x 1 ( 0.6365 ))]γ2=exp[ln( x 2+ x 1 Λ 21)+x1( Λ 12 x 1 + x 2 Λ 12 Λ 21 x 2 + x 1 Λ 21 )]=exp[ln( x 2+ x 1( 0.6365))+x1( ( 0.08195 ) x 1 + x 2 ( 0.08195 ) ( 0.6365 ) x 2 + x 1 ( 0.6365 ))]

Now, using the modified Raoult’s law, calculate the values of equilibrium ratio of component 1 and 2 using equations (2) and (7) as:

  Ki=yixi=γiPi satPK1=γ1P1 satPK2=γ2P2 satP

Now, use equation (9) and write it for both the component, 1 and 2 as shown below:

  y1=0.3( K 1 )1+V( K 1 1)y2=0.7( K 2 )1+V( K 2 1) .......(10)

Since, y1+y2=1, the above equations are solved to calculate V

as:

  0.3(K1)1+V(K11)+0.7(K2)1+V(K21)=1

Now, use equation (8) to calculate the value of L

as:

  L+V=1L=1V

Also, use the calculated value of V in equation set (10) and find the values of y1 and y2 .

Using these values and the calculated values of K1 and K2, find the values of x1 and x2

by equation (7) as:

  Ki=yixixi=yiKix1=y1K1x2=y2K2

Again, substitute these calculated values of x1 and x2 as guessed values x1(guess) and x2(guess) in calculating γ1 and γ2 and follow the steps given until x1(guess)x1 . After a considerable time of iterations, the result of the P,T

flash calculations is:

  V=0.807L=0.193y1=0.35y2=0.65x1=0.09x2=0.91

(d)

Interpretation Introduction

Interpretation:

The values of the azeotropic temperature and composition of the system is to be calculated if it exists for the given binary system.

Concept Introduction:

Antoine equation is used to determine the vapor pressure of any substance at the given temperature by the equation:

  lnPsat(kPa)=AB(TC)+C .......(1)

Here, A, B and C are the constants specific for a substance given in table B.2 of appendix B.

Equation 13.19

to be used for Modified Raoult’s law is:

  yiP=xiγiPisat .......(2)

Wilson equations to be used are:

  lnγ1=ln(x1+x2Λ 12)+x2( Λ 12 x 1 + x 2 Λ 12 Λ 21 x 2 + x 1 Λ 21 )lnγ2=ln(x2+x1Λ 21)+x1( Λ 12 x 1 + x 2 Λ 12 Λ 21 x 2 + x 1 Λ 21 ) .......(4)

Here, the parameters Λ12 and Λ21

are calculated by the formula:

  Λ12=V2V1expa 12RTΛ21=V1V2expa 21RT .......(5)

Where, V1, V2, a12 and a21 are the Wilson equation parameters given in table 13.10 for binary systems.

Relative volatility is defined by,

  α12y1/x1y2/x2 .......(11)

When (α 12)x1=0>1 and (α 12)x1=1<1, there exists an azeotrope in the given system.

At the azeotropic point, α12=1 and x1=y1 .

(d)

Expert Solution
Check Mark

Answer to Problem 13.49P

The azeotropic values of temperature and composition for the binary system is calculated as:

  Taz=87.73Cx1=y1=0.4546

Explanation of Solution

Given information:

The pressure at which the azeotrope of the system may exists is 101.33 kPa .

Wilson equation parameters are given in Table 13.10 as shown below:

EBK INTRODUCTION TO CHEMICAL ENGINEERIN, Chapter 13, Problem 13.49P , additional homework tip  4

Use the given value of P using equation (1) to calculate Tb1 and Tb2

as:

  lnP=16.11543483.67( T b1 )+205.807ln(101.33)=16.11543483.67( T b1 )+205.807Tb1=97.2CTb1=370.35 KlnP=16.38723885.70( T b2 )+230.170ln(101.33)=16.38723885.70( T b2 )+230.170Tb2=99.99CTb2=373.14 K

From table 13.10, the parameters needed for 1Propanol(1) and Water(2)

to be used in Wilson equation are:

  V1=18.07 cm3/molV2=75.14 cm3/mola12=775.48 cal/mola21=1351.90 cal/mol

The value of universal gas constant to be used is,

  R=1.9859 cal/(molK)

Now, use equation (5) to calculate the values of Λ12 and Λ21 for Tb1 and Tb2

as:

( Λ 12 ) b1 = V 2 V 1 exp a 12 R T b1

= 18.07 cm 3 mol 75.14 cm 3 mol exp 775.48 cal mol ( 1.9859 cal molK )( 370.35 K )

=0.08379

( Λ 12 ) b2 = V 2 V 1 exp a 12 R T b2

= 18.07 cm 3 mol 75.14 cm 3 mol exp 775.48 cal mol ( 1.9859 cal molK )( 373.14 K )

=0.08445

( Λ 21 ) b1 = V 1 V 2 exp a 21 R T b1

= 75.14 cm 3 mol 18.07 cm 3 mol exp 1351.90 cal mol ( 1.9859 cal molK )( 370.35 K )

=0.6616

( Λ 21 ) b2 = V 1 V 2 exp a 21 R T b2

= 75.14 cm 3 mol 18.07 cm 3 mol exp 1351.90 cal mol ( 1.9859 cal molK )( 373.14 K )

=0.6708

Now, use these values of Λ12 and Λ21 along with the values of x1=0 and x2=1 and calculate the values of γ1 and γ2 for Tb1

using equations set (4) as:

  γ1=exp[ln( x 1+ x 2 ( Λ 12 ) b1)+x2( ( Λ 12 ) b1 x 1 + x 2 ( Λ 12 ) b1 ( Λ 21 ) b1 x 2 + x 1 ( Λ 21 ) b1 )]=exp[ln(0+1( 0.08379))+1( 0.08379 0+1( 0.08379 ) 0.6616 1+0( 0.6616 ))]=16.741γ2=exp[ln( x 2+ x 1 ( Λ 21 ) b1)+x1( ( Λ 12 ) b1 x 1 + x 2 ( Λ 12 ) b1 ( Λ 21 ) b1 x 2 + x 1 ( Λ 21 ) b1 )]=exp[ln(1+0( 0.6616))+0( 0.08379 0+1( 0.08379 ) 0.6616 1+0( 0.6616 ))]=1.00

Calculate P1sat at Tb2 and P2sat at Tb1

using equation (1) as:

  lnP1sat=16.11543483.67( T b2 )+205.807P1sat=e( 16.1154 3483.67 ( 99.99 )+205.807 )P1sat=112.54 kPalnP2sat=16.38723885.70( T b1 )+230.170P2sat=e( 16.3872 3885.70 ( 97.2 )+230.170 )P2sat=91.63 kPa

Using equation (11) along with the modified Raoult’s law, calculate the value of relative volatility at x1=0

as:

  ( α 12)x1=0y1/x1y2/x2=γ1P1 sat/Pγ2P2 sat/P=γ1P1 satγ2P2 sat=( 16.741)( 112.54)( 1.00)( 91.63)=20.56

For x1=1 and x2=0 and calculate the values of γ1 and γ2 for Tb2

using equations set (4) as:

  γ1=exp[ln( x 1+ x 2 ( Λ 12 ) b2)+x2( ( Λ 12 ) b2 x 1 + x 2 ( Λ 12 ) b2 ( Λ 21 ) b2 x 2 + x 1 ( Λ 21 ) b2 )]=exp[ln(1+0( 0.08445))+0( 0.08445 1+0( 0.08445 ) 0.6708 0+1( 0.6708 ))]=1.00γ2=exp[ln( x 2+ x 1 ( Λ 21 ) b2)+x1( ( Λ 12 ) b2 x 1 + x 2 ( Λ 12 ) b2 ( Λ 21 ) b2 x 2 + x 1 ( Λ 21 ) b2 )]=exp[ln(0+1( 0.6708))+1( 0.08445 0+1( 0.08445 ) 0.6708 1+0( 0.6708 ))]=2.072

Using equation (11) along with the modified Raoult’s law, calculate the value of relative volatility at x1=1

as:

  ( α 12)x1=1y1/x1y2/x2=γ1P1 sat/Pγ2P2 sat/P=γ1P1 satγ2P2 sat=( 1.00)( 112.54)( 2.072)( 91.63)=0.593

Since (α 12)x1=0>1 and (α 12)x1=1<1, there exists an azeotrope for this binary system.

To calculate the azeotropic pressure, consider the condition α12=1 and x1=y1 .

Consider the following set of equations in the given order as:

step 1: Λ 12 = V 2 V 1 exp a 12 R T az

= 18.07 cm 3 mol 75.14 cm 3 mol exp 775.48 cal mol ( 1.9859 cal molK )( T az +273.15 K )

=( 0.2405 )exp 390.493 ( T az +273.15 )

Λ 21 = V 1 V 2 exp a 21 R T az

= 75.14 cm 3 mol 18.07 cm 3 mol exp 1351.90 cal mol ( 1.9859 cal molK )( T az +273.15 K )

=( 4.1583 )exp 680.749 ( T az +273.15 )

Step 2:

γ 1 =exp[ ln( x 1 + x 2 Λ 12 )+ x 2 ( Λ 12 x 1 + x 2 Λ 12 Λ 21 x 2 + x 1 Λ 21 ) ]

γ 2 =exp[ ln( x 2 + x 1 Λ 21 )+ x 1 ( Λ 12 x 1 + x 2 Λ 12 Λ 21 x 2 + x 1 Λ 21 ) ]

Step 3:

P az = x 1 γ 1 P 1 sat + x 2 γ 2 P 2 sat

Now, use the values of x1 and x2 guessed as 0.4 and 0.8, and the values of y1 and y2 guessed as 0.4 and 0.8, respectively. Also, make an initial guess for Taz as Tguess=333.15 K and using iterative method and the condition to stop the iteration as Paz=101.33 kPa, find Taz for the given value of x1

as:

  Taz=87.73Cx1=y1=0.4546

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
4.59 Using the unilateral z-transform, solve the following difference equations with the given initial conditions. (a) y[n]-3y[n-1] = x[n], with x[n] = 4u[n], y[− 1] = 1 (b) y[n]-5y[n-1]+6y[n-2]= x[n], with x[n] = u[n], y[-1] = 3, y[-2]= 2 Ans. (a) y[n] = -2+9(3)", n ≥ -1 (b) y[n]=+8(2)" - (3)", n ≥ -2
(30) 6. In a process design, the following process streams must be cooled or heated: Stream No mCp Temperature In Temperature Out °C °C kW/°C 1 5 350 270 2 9 270 120 3 3 100 320 4 5 120 288 Use the MUMNE algorithm for heat exchanger networks with a minimum approach temperature of 20°C. (5) a. Determine the temperature interval diagram. (3) (2) (10) (10) b. Determine the cascade diagram, the pinch temperatures, and the minimum hot and cold utilities. c. Determine the minimum number of heat exchangers above and below the pinch. d. Determine a valid heat exchange network above the pinch. e. Determine a valid heat exchange network below the pinch.
Use this equation to solve it.

Chapter 13 Solutions

EBK INTRODUCTION TO CHEMICAL ENGINEERIN

Ch. 13 - A binary mixture of mole fraction z1is flashed to...Ch. 13 - Humidity, relating to the quantity of moisture in...Ch. 13 - A concentrated binary solution containing mostly...Ch. 13 - Air, even more than carbon dioxide, is inexpensive...Ch. 13 - Helium-laced gases are used as breathing media for...Ch. 13 - A binary system of species 1 and 2 consists of...Ch. 13 - For the system ethyl ethanoate(l)/n-heptane(2) at...Ch. 13 - A liquid mixture of cyclohexanone(1)/phenol(2) for...Ch. 13 - A binary system of species 1 and 2 consists of...Ch. 13 - For the acetone(l)/methanol(2) system, a vapor...Ch. 13 - The following is a rule of thumb: For a binary...Ch. 13 - A process stream contains light species 1 and...Ch. 13 - If a system exhibits VLE, at least one of the...Ch. 13 - Flash calculations are simpler for binary systems...Ch. 13 - Prob. 13.25PCh. 13 - (a) A feed containing equimolar amounts of...Ch. 13 - A binary mixture of benzene(1) and toluene(2) is...Ch. 13 - Ten (10) kmolhr-1 of hydrogen sulfide gas is...Ch. 13 - Physiological studies show the neutral comfort...Ch. 13 - Prob. 13.30PCh. 13 - Prob. 13.31PCh. 13 - Prob. 13.32PCh. 13 - If Eq. (13.24) is valid for isothermal VLE in a...Ch. 13 - Prob. 13.34PCh. 13 - The excess Gibbs energy for binary systems...Ch. 13 - For the ethanol(l )/chloroform(2) system at 50°C,...Ch. 13 - VLE data for methyl tert-butyl...Ch. 13 - Prob. 13.38PCh. 13 - Prob. 13.39PCh. 13 - Following are VLE data for the system...Ch. 13 - Prob. 13.41PCh. 13 - Prob. 13.42PCh. 13 - Problems 13.43 through 13.54 require parameter...Ch. 13 - Problems 13.43 through 13.54 require parameter...Ch. 13 - Prob. 13.45PCh. 13 - Problems 13.43 through 13.54 require parameter...Ch. 13 - Prob. 13.47PCh. 13 - Prob. 13.48PCh. 13 - Prob. 13.49PCh. 13 - Prob. 13.50PCh. 13 - Problems 13.43 through 13.54 require parameter...Ch. 13 - Prob. 13.52PCh. 13 - The following expressions have been reported for...Ch. 13 - Possible correlating equations for In 1 in a...Ch. 13 - Prob. 13.57PCh. 13 - Binary VLE data are commonly measured at constant...Ch. 13 - Consider the following model for GE/RT of a binary...Ch. 13 - A breathalyzer measures volume-% ethanol in gases...Ch. 13 - Table 13.10 gives values of parameters for the...Ch. 13 - Prob. 13.62PCh. 13 - A single P-x1- y1data point is available for a...Ch. 13 - A single P- x1, data point is available for a...Ch. 13 - The excess Gibbs energy for the system...Ch. 13 - Prob. 13.66PCh. 13 - A system formed of methane(l) and a light oil(2)...Ch. 13 - Use Eq. (13.13) to reduce one of the following...Ch. 13 - For one of the following substances, determine...Ch. 13 - Departures from Raoult's law are primarily from...Ch. 13 - The relative volatility a12is commonly used in...Ch. 13 - Prob. 13.74PCh. 13 - Prob. 13.75PCh. 13 - Prob. 13.76P
Knowledge Booster
Background pattern image
Chemical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The
Homogeneous and Heterogeneous Equilibrium - Chemical Equilibrium - Chemistry Class 11; Author: Ekeeda;https://www.youtube.com/watch?v=8V9ozZSKl9E;License: Standard YouTube License, CC-BY