Concept explainers
A 34,000-lb airplane lands on an aircraft carrier and is caught by an arresting cable. The cable is inextensible and is paid out at A and B from
Fig. P13.190
Find the tension in the cable (F).
Answer to Problem 13.190RP
The tension in the cable (F) is
Explanation of Solution
Given information:
The landing speed
The weight of the airplane (W) is
The distance traveled by the airplane (d) is
The vertical height of BC (x) is
The vertical height of CA (y) is
The acceleration due to gravity (g) is
Calculation:
Calculate the mass of the airplane (m) using the formula:
Substitute
Convert the unit of landing speed
Here,
Substitute
Calculate the amount of cable
Substitute
Calculate the initial kinetic energy of the airplane
Substitute
The final kinetic energy of the airplane
Calculate the work done by the airplane
Substitute
The expression for the work energy in the airplane as follows:
Substitute
Therefore, the tension in the cable (F) is
Want to see more full solutions like this?
Chapter 13 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
- Problem 1 Problem 14.71 The circular disk lies in the horizontal plane and rotates with a constant counterclockwise angu- lar velocity of 4 rad/s. The 0.5-kg slider A is supported horizontally by the smooth slot and the string attached at B. Determine the tension in the string and the magnitude of the horizontal force exerted on the slider by the slot. 4 rad/s 0.6 m B 90° A -0.6 m-arrow_forwardProblem 2: Consider the following system of two interconnected pendulums P₁ and P₂ with same mass m and length 2α that are suspended with massless rods from O₁ and O₂ without friction as shown in Fig. 2. The spring k is unstreched when the pendulums are at rest in vertical equilibrium. A horizontal force f(t) is applied on the mass m of the pendulum P₁. f(t) P₁ a a m a a P₂ Fig. 2: Interconnected pendulums Assuming small angles write the linearized equations of motion of the two pendulums with respect to the angular displacements of the pendulum P₁ and ₂ of the pendulum P₂arrow_forwardFour identical rods, each of length = 1.3 m and weight 90 N, are connected at the frictionless pins A, B, C, and D. A compression spring of spring constant K = 5.3 N/mm connects pins B and C. and a weight W2 of 450 N is supported at pin D. The system is released from a configuration where = 45°. If the spring is not compressed at that configuration, show that the maximum de- flection of the weight We is 0.1966 m.arrow_forward
- Problem 3. The system of two blocks, cable, and frictionless pulley is initially at rest. Determine the minimum magnitude of P necessary to cause motion. For this value of P, what is the magnitude of the tension in the cable? Hint: For the top block to move to the right, the bottom block must simultaneously move to the left since they are connected via the cable. 5 kg Hq=0.35 10 kg H = 0.50arrow_forwardSlider C has a mass of 0.5 kg and may move in a slot cut in arm AB, which rotates at constant speed in a horizontal plane. The slider is attached to a spring of constant k = 150 N/m, which is unstretched when r = 0. When arm AB rotates about the vertical axis, the slider moves without friction outward along the smooth slot cut. Determine for the position r = 80 mm: a) The constant speed (V) of the slider. b) The normal force (N) exerted on the slider by arm AB. A r=80mm Barrow_forwardActivity 3. A body that weighs W Newtons falls from rest from a height of 600mm and strikes a spring whose scale is 7.00 N/mm. If the maximum compression of the spring is 150 mm, what is the value of W? Disregard the mass of the spring.arrow_forward
- As part of an outdoor display, a 5-kg model Cof the earth is attached to wires AC and BC and revolves at a constant speed v in the norizontal circle shown. Determine the range of the allowable values of v if both wires are to remain taut and if the tension in either of the wires is not to exceed 116 N. Given: r= 0.945 m.arrow_forwardTwo 2.6-lb collars A and B can slide without friction on a frame, consisting of the horizontal rod OE and the vertical rod CD, which is free to rotate about CD . The two collars are connected by a cord running over a pulley that is attached to the frame at O and a stop prevents collar B from moving. The frame is rotating at the rate 0 =12 rad/s and r= 0.6 ft when the stop is removed allowing collar A to move out along rod OE . Neglecting friction and the mass of the frame, determine, for the position r= 1.2 ft, (a) the transverse component of the velocity of collar A, (b) the tension in the cord and the acceleration of collar A relative to the rod OE.arrow_forwardPlease asaparrow_forward
- A 54-kg pilot flies a jet trainer in a half vertical loop of 1200-m radius so that the speed of the trainer decreases at a constant rate. Knowing that the pilot's apparent weights at Points A and C are 1680 N and 350 N, respectively, determine the force exerted on her by the seat of the trainer when the trainer is at Point B. C 1200 m В Aarrow_forwardPin B weighs 0.1kg and is free to slide in a horizontal plane along therotating arm OC and along the circular slot DE of radius b=500mm.Neglecting friction and assuming that θ= 15 rad/s andθ=250 rad/s2 for the position θ= 20o , determine for that position(a) the radial and transverse components of the resultant forceexerted on pin B, (b) the forces P and Q exerted on pin B,respectively, by rod OC and the wall of slot DE.arrow_forwardProblem 4.51 The force-compression profile of a rubber bumper B is given by FB = Bx, where B = 3.5 x 10 lb/ft and x is the bumper's compression measured in the horizontal direction. Determine the expression for the potential energy of the bumper B. In addition, if the cruiser C weighs 70,00O lb and impacts B with a speed of 5 ft/s, determine the compression required to bring C to a stop. Model C as a particle and neglect C's vertical motion as well as the drag force between the water and the cruiser C. 5. 0.1 0.2 0.3 0.4 0.5 x (ft) Figure P4.51 FB (x105 lb)arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY