
Concept explainers
At an amusement park, there are 200-kg bumper cars A, B, and C that have riders with masses of 40 kg, 60 kg, and 35 kg, respectively. Car A is moving to the right with a velocity vA = 2 m/s and car C has a velocity vB = 1.5 m/s to the left, but car B is initially at rest. The coefficient of restitution between each car is 0.8. Determine the final velocity of each car, after all impacts, assuming (a) cars A and C hit car B at the same time, (b) car A hits car B before car C does.
(a)

Find the final velocity of each car after all impact, assuming car A
Answer to Problem 13.162P
The final velocity of each car after all impact, assuming car A
Explanation of Solution
Given information:
The mass of the bumper car (m) is
The mass of the rider A
The mass of the rider B
The mass of the rider C
The velocity of A
The velocity of C
The coefficient of restitution between each car (e) is 0.8.
Calculation:
Calculate the total mass of car A along with rider
Substitute
Calculate the total mass of the car B along with rider
Substitute
Calculate the total mass of the car C along with rider
Substitute
Assume the velocities towards the right to be positive and the velocities towards the left to be negative.
The velocity will be zero as the car B
The expression for the principle of conservation of momentum to the cars A, B, and C when cars A and C hit the car B at the same time as follows;
Here,
Substitute
Calculate the coefficient of restitution (e) of the impact between the cars A and B using the formula:
Substitute 0.8 for e,
Calculate the coefficient of restitution
Substitute 0.8 for e,
Solve the equations (1) and (2) and (3) to obtain velocities.
Add the equations (2) and (3) to eliminate
Multiply the equation (2) with 260 and subtract it from the equation (1).
Multiply the equations (4) with 500 and add it to the equation (5) to obtain the final velocity of the car C.
Substitute
Substitute
Therefore, the final velocity of each car after all impact, assuming car A
(b)

Find the final velocity of each car after all impact, assuming car A
Answer to Problem 13.162P
The final velocity of each car after all impact, assuming car A
Explanation of Solution
Given information:
The mass of the bumper car (m) is
The mass of the rider A
The mass of the rider B
The mass of the rider C
The velocity of A
The velocity of B
The coefficient of restitution between each car (e) is 0.8.
Calculation:
Calculate the final velocities of the cars when car A hits car B before car C does.
The expression for the principle of conservation of momentum to the first impact between car A and car B as follows:
Substitute
Calculate the coefficient of restitution (e) of the first impact between the cars A and B using the formula:
Substitute 0.8 for e,
Multiply the equations (7) with 240 and add it to the equation (6) to obtain the final velocity of car B.
Substitute
The expression for the principle of conservation of momentum for the second impact between car B and car C as follows:
Here, the final velocity of the car B after the second impact is
Substitute
The expression for the coefficient of restitution
Substitute 0.8 for e,
Multiply the equation (9) with 260 and add it to the equation (8) to obtain the final velocity of car C after the impact.
Substitute
Consider the car A and car B again impact with each other.
The expression for the principle of conservation of momentum to the third impact between the car A and car B as follows;
Here,
Substitute
Calculate the coefficient of restitution (e) of the third impact between the cars A and B using the formula:
Substitute 0.8 for e,
Multiply the equation (11) with 240 and add it to the equation (1) to obtain the final velocity of the car B.
Substitute
Therefore, the final velocity of each car after all impact, assuming car A
Want to see more full solutions like this?
Chapter 13 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
- Required information An eccentric force P is applied as shown to a steel bar of 25 × 90-mm cross section. The strains at A and B have been measured and found to be εΑ = +490 μ εB=-70 μ Know that E = 200 GPa. 25 mm 30 mm 90 mm 45 mm B Determine the distance d. The distance dis 15 mm mm.arrow_forwardhandwritten-solutions, please!arrow_forwardhandwritten-solutions, please!arrow_forward
- ! Required information Assume that the couple shown acts in a vertical plane. Take M = 25 kip.in. r = 0.75 in. A B 4.8 in. M 1.2 in. [1.2 in. Determine the stress at point B. The stress at point B is ksi.arrow_forwardhandwritten-solutions, please!arrow_forwardhandwritten-solutions, please!arrow_forward
- No use chatgptarrow_forwardProblem 6 (Optional, extra 6 points) 150 mm 150 mm 120 mm 80 mm 60 mm PROBLEM 18.103 A 2.5 kg homogeneous disk of radius 80 mm rotates with an angular velocity ₁ with respect to arm ABC, which is welded to a shaft DCE rotating as shown at the constant rate w212 rad/s. Friction in the bearing at A causes ₁ to decrease at the rate of 15 rad/s². Determine the dynamic reactions at D and E at a time when ₁ has decreased to 50 rad/s. Answer: 5=-22.01 +26.8} N E=-21.2-5.20Ĵ Narrow_forwardProblem 1. Two uniform rods AB and CE, each of weight 3 lb and length 2 ft, are welded to each other at their midpoints. Knowing that this assembly has an angular velocity of constant magnitude c = 12 rad/s, determine: (1). the magnitude and direction of the angular momentum HD of the assembly about D. (2). the dynamic reactions (ignore mg) at the bearings at A and B. 9 in. 3 in. 03 9 in. 3 in. Answers: HD = 0.162 i +0.184 j slug-ft²/s HG = 2.21 k Ay =-1.1 lb; Az = 0; By = 1.1 lb; B₂ = 0.arrow_forward
- Problem 5 (Optional, extra 6 points) A 6-lb homogeneous disk of radius 3 in. spins as shown at the constant rate w₁ = 60 rad/s. The disk is supported by the fork-ended rod AB, which is welded to the vertical shaft CBD. The system is at rest when a couple Mo= (0.25ft-lb)j is applied to the shaft for 2 s and then removed. Determine the dynamic reactions at C and D before and after the couple has been removed at 2 s. 4 in. C B Mo 5 in 4 in. Note: 2 rotating around CD induced by Mo is NOT constant before Mo is removed. and ₂ (two unknowns) are related by the equation: ₂ =0+ w₂t 3 in. Partial Answer (after Mo has been removed): C-7.81+7.43k lb D -7.81 7.43 lbarrow_forwardProblem 4. A homogeneous disk with radius and mass m is mounted on an axle OG with length L and a negligible mass. The axle is pivoted at the fixed-point O, and the disk is constrained to roll on a horizontal surface. The disk rotates counterclockwise at the constant rate o₁ about the axle. (mg must be included into your calculation) (a). Calculate the linear velocity of G and indicate it on the figure. (b). Calculate ₂ (constant), which is the angular velocity of the axle OG around the vertical axis. (c). Calculate the linear acceleration ā of G and indicate it on the figure. (d). Determine the force (assumed vertical) exerted by the floor on the disk (e). Determine the reaction at the pivot O. 1 Answers: N = mg +mr(r/L)² @² |j mr w IIG C R L i+ 2L =arrow_forwardProblem 2. The homogeneous disk of weight W = 6 lb rotates at the constant rate co₁ = 16 rad/s with respect to arm ABC, which is welded to a shaft DCE rotating at the constant rate 2 = 8 rad/s. Assume the rod weight is negligible compared to the disk. Determine the dynamic reactions at D and E (ignore mg). Answers: D=-7.12ĵ+4.47k lb r-8 in. 9 in. B D E=-1.822+4.47 lb 9 in. E 12 in. 12 in. xarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





