Concept explainers
The 2-lb ball at A is suspended by an inextensible cord and given an initial horizontal velocity of v0. If l = 2 ft, xB = 0.3 ft, and yB = 0.4 ft, determine the initial velocity v0 so that the ball will enter the basket. (Hint: Use a computer to solve the resulting set of equations.)
Fig. P13.201
Find the initial velocity
Answer to Problem 13.201RP
The initial velocity
Explanation of Solution
Given information:
The weight of the ball (m) is
The length of the cord (l) is
The horizontal distance between the basket and point of suspension of the ball
The vertical distance between basket and point of suspension of the ball
The acceleration due to gravity (g) is
Calculation:
Show the diagram of the suspended ball by an inextensible cord as in Figure (1).
Assume that position ‘1’ be at A and position ‘2’ be at the point described by the angle where the path of the ball changes from circular to parabolic.
The tension in the cord at position ‘2’, becomes slack
Refer Figure (1),
The expression for the x-coordinate of the ball at position ‘2’
The expression for the y-coordinate of the ball at position ‘2’
Show the free body diagram of the ball at position ‘2’ as in Figure (2).
The expression for the normal acceleration of the ball
Since, the cord becomes slack at position ‘2’, so the tension (Q) will be zero.
Calculate the velocity of the ball by applying Newton’s second law and resolve the forces acting on the ball at position ‘2’ using the relation:
Substitute
Substitute 0 for
The expression for the kinetic energy of the ball at position ‘1’
Calculate the potential energy of the ball at position ‘1’
Here, negative sign is used as the ball is located below the datum level and h is the vertical distance of the ball from the datum level.
Substitute
The expression for the kinetic energy of the ball at position ‘2’
The expression for the vertical distance of the ball by referring the Figure 1 as follows:
Calculate the potential energy of the ball at position ‘2’
Substitute
The expression for principle of conservation of energy at position ‘1’ and position ‘2’ for the ball, to calculate the angle swept by the ball
Substitute
Find the velocity at position 2:
Substitute
Show the parabolic motion of the ball after it reaches position ‘2’ as in Figure (3).
The expression for the velocity of the projectile ball after reaching the position ‘2’
Here,
The expression for the horizontal velocity component of the projectile ball along the negative X-axis as follows:
The expression for the horizontal distance between the basket and point of suspension of the ball
Here,
Substitute
Substitute
The expression for the vertical velocity component of the projectile ball along the negative X-axis as follows:
The expression for the vertical distance between the basket and point of suspension of the ball
Substitute
Substitute
Use trial and error method to calculate the value of
Case (1):
Try
Find the velocity at position 2:
Substitute
Find the time difference between basket and ball:
Substitute
Find the vertical distance between basket and ball:
Substitute
Case (2):
Try
Find the velocity at position 2:
Substitute
Find the time difference between basket and ball:
Substitute
Find the vertical distance between basket and ball:
Substitute
Case (3):
Try
Find the velocity at position 2:
Substitute
Find the time difference between basket and ball:
Substitute
Find the vertical distance between basket and ball:
Substitute
The expression for the data point as follows:
From above calculations, the following set of data points is obtained.
Calculate the general form of quadratic Equation.
Here, a, b, c are constants.
Substitute 0 for
Substitute
Substitute
Solve the equation (7) and equation (8).
Substitute
Substitute
Solve the above equation.
Calculate the angle
Substitute
Find the velocity at position 2:
Substitute
Find the initial velocity
Substitute
Therefore, the initial velocity
Want to see more full solutions like this?
Chapter 13 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
- Consider a large 6-cm-thick stainless steel plate (k = 15.1 W/m-K) in which heat is generated uniformly at a rate of 5 × 105 W/m³. Both sides of the plate are exposed to an environment at 30°C with a heat transfer coefficient of 60 W/m²K. Determine the value of the highest and lowest temperature. The highest temperature is The lowest temperature is °C. °C.arrow_forwardSketch and explain a PV Diagram and a Temperature Entropy Diagram for a 4 stroke diesel engine please, please explain into detail the difference bewteen the two and referance the a diagram. Please include a sketch or an image of each diagramarrow_forwardDraw left view of the first orthographic projectionarrow_forward
- Sketch and Describe a timing diagram for a 2 stroke diesel engine emphasis on the 2 stroke as my last answer explained 4 stroke please include a diagram or sketch.arrow_forwardA 4 ft 200 Ib 1000 Ib.ft C 2 ft 350 Ib - за в 2.5 ft 150 Ib 250 Ib 375 300 Ib Replace the force system acting on the frame. shown in the figure by a resultant force (magnitude and direction), and specify where its line of action intersects member (AB), measured from point (A).arrow_forwardA continuous flow calorimeter was used to obtain the calorific value of a sample of fuel and the following data collected: Mass of fuel: 2.25 kgInlet water temperature: 11 ° COutlet water temperature 60 ° CQuantity of water: 360 Liters Calorimeter efficiency: 85%Calculate the calorific value of the sample ( kJ / kg ). ive submitted this question twice and have gotten two way different answers. looking for some help thanksarrow_forward
- 15 kg of steel ball bearings at 100 ° C is immersed in 25 kg of water at 20 ° C . Assuming no loss of heat to or from the container, calculate the final temperature of the water after equilibrium has been attained.Specific heat of steel: 0.4857 kJ / kg / ° KSpecific heat of water: 4.187 kJ / kg / ° Karrow_forwardSketch and explain a PV Diagram and a Temperature Entropy Diagram for a 4 stroke diesel enginearrow_forwardA continuous flow calorimeter was used to obtain the calorific value of a sample of fuel and the following data collected: Mass of fuel: 2.25 kgInlet water temperature: 11 ° COutlet water temperature 60 ° CQuantity of water: 360 Liters Calorimeter efficiency: 85%Calculate the calorific value of the sample ( kJ / kg ).arrow_forward
- Chapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY... Scoresarrow_forwardmylabmastering.pearson.com Chapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY... P Pearson MyLab and Mastering Scoresarrow_forwardanswer the fallowing Brake Specific Fuel Consumption - 0.3 kg/kwh, Mechanical Efficiency- 90% Calorific Value of Fuel -45 MJ/kg. Given these values, find the indicated power, indicated thermal efficiency and brake thermal efficiencyarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill EducationControl Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY