
Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 13.11E
Interpretation Introduction
Interpretation:
The significance of the number in the bottom right position of the general form of the
Concept introduction:
Axis of symmetry is defined as an axis around which a rotation by
This is also known as rotational axis and denoted by
An improper axis of symmetry is the symmetry operation denoted by
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
How many grams of solid NaCN have to
be added to 1.5L of water to dissolve 0.18
mol of Fe(OH)3 in the form Fe(CN)63 - ? (
For simplicity, ignore the reaction of CN -
ion with water) Ksp for Fe(OH)3 is 2.8E
-39, and Kform for Fe(CN)63 - is 1.0E31
Draw the most stable chair conformation of 1-ethyl-1-methylcyclohexane, clearly showing the axial and equatorial substituents. [4]
Draw structures corresponding to the following IUPAC name for each of the following compounds; [5]
i) 4-Isopropyl-2,4,5-trimethylheptane
ii) trans-1-tert-butyl-4-ethylcyclohexane
iii) Cyclobutylcycloheptane
iv) cis-1,4-di-isopropylcyclohexane (chair conformation)
v) 3-Ethyl-5-isobutylnonane
Draw and name molecules that meet the following descriptions; [4]
a) An organic molecule containing 2 sp2 hybridised carbon and 1 sp-hybridised carbon atom.
b) A cycloalkene, C7H12, with a tetrasubstituted double bond.
Also answer question 2 from the image
Chapter 13 Solutions
Physical Chemistry
Ch. 13 - In your own words, explain why an object that has...Ch. 13 - Identify the symmetry elements present in the...Ch. 13 - Identify the symmetry elements present in the...Ch. 13 - Prob. 13.4ECh. 13 - Prob. 13.5ECh. 13 - Prob. 13.6ECh. 13 - Prob. 13.7ECh. 13 - Prob. 13.8ECh. 13 - Any axis of symmetry Cn that rotates an object by...Ch. 13 - Prob. 13.10E
Ch. 13 - Prob. 13.11ECh. 13 - Prob. 13.12ECh. 13 - Prob. 13.13ECh. 13 - What are the number of classes and the order of...Ch. 13 - Prob. 13.15ECh. 13 - a Show that the C3v point group satisfies the...Ch. 13 - a In the Td point group, an S41 improper rotation...Ch. 13 - Determine which single symmetry operation of the...Ch. 13 - Prob. 13.19ECh. 13 - Prob. 13.20ECh. 13 - Prob. 13.21ECh. 13 - Figure 13.27 shows the structure of the molecule...Ch. 13 - Prob. 13.23ECh. 13 - Identify all the symmetry elements present in the...Ch. 13 - Point groups are called such because all of the...Ch. 13 - Determine the point groups of the following...Ch. 13 - Determine the point group of the following...Ch. 13 - Determine the point groups of the following...Ch. 13 - Determine the point groups of the following...Ch. 13 - Structural isomers can have very different point...Ch. 13 - Structural isomers can have very different point...Ch. 13 - Prob. 13.32ECh. 13 - Identify the point group of the wave functions of...Ch. 13 - Identify the point group of the wave functions of...Ch. 13 - Prob. 13.35ECh. 13 - Determine if the following species have permanent...Ch. 13 - Determine if the following species have permanent...Ch. 13 - Which of the following species will not have...Ch. 13 - Prob. 13.39ECh. 13 - Explain why a molecule with a center of inversion...Ch. 13 - a Unlike methane, bromochlorofluoromethane...Ch. 13 - Prob. 13.42ECh. 13 - Prob. 13.43ECh. 13 - Prob. 13.44ECh. 13 - Show that the irreducible representations of the...Ch. 13 - Show that any two of the irreducible...Ch. 13 - Show that any irreducible representation of these...Ch. 13 - Explain why this proposed irreducible...Ch. 13 - Prob. 13.49ECh. 13 - Prob. 13.50ECh. 13 - Why is it unnecessary to consider whether an...Ch. 13 - Prob. 13.52ECh. 13 - Prob. 13.53ECh. 13 - Prob. 13.54ECh. 13 - Prob. 13.55ECh. 13 - Prob. 13.56ECh. 13 - Prob. 13.57ECh. 13 - Prob. 13.58ECh. 13 - Reduce the following reducible representations...Ch. 13 - Determine the resulting representations for the...Ch. 13 - Prob. 13.61ECh. 13 - Without using the great orthogonality theorem,...Ch. 13 - Assume that you are evaluating the integral of...Ch. 13 - Prob. 13.64ECh. 13 - Assume that x- polarized light can be assigned an...Ch. 13 - Prob. 13.66ECh. 13 - Prob. 13.67ECh. 13 - Prob. 13.68ECh. 13 - Prob. 13.69ECh. 13 - Prob. 13.70ECh. 13 - Construct the symmetry-adapted linear combination...Ch. 13 - Prob. 13.72ECh. 13 - Prob. 13.73ECh. 13 - Prob. 13.74ECh. 13 - Prob. 13.75ECh. 13 - Prob. 13.76ECh. 13 - Prob. 13.77ECh. 13 - Suppose you use p0,p1 and p+1 along with s...Ch. 13 - Show that the individual sp orbitals, as written...Ch. 13 - Prob. 13.80ECh. 13 - What is the rough hybridization of the carbon...Ch. 13 - Determine the symmetry species of the D3h point...Ch. 13 - Determine the D3h symmetry species of the sp3d...Ch. 13 - Prob. 13.84ECh. 13 - In propene CH3CH=CH2, the first carbon has sp3...Ch. 13 - Prob. 13.87ECh. 13 - Prob. 13.88ECh. 13 - Prob. 13.89E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- H 14. Draw the line angle form of the following molecule make sure you use the proper notation to indicate spatial positioning of atoms. F F H 15. Convert the following condensed form to line angle form: (CH3)3CCH2COCH2CON(CH2CH3)2arrow_forwardIn a reaction between two reactants A and B, the half-life is the same for both only if(A) the stoichiometry A:B is 1:1.(B) the stoichiometry A:B is 1:2 or 2:1.arrow_forwardIn a reaction between two reactants A and B, the half-life is the same for both.(1) Only if the stoichiometry A:B is 1:1.(2) If the initial quantities of A and B are in their stoichiometric ratios.arrow_forward
- There are 48 pairs of students in the following table. Each pair has quantitatively determined the mass of taurine in a 250 mL can of the popular energy drink marketed as “Munster” using High Performance Liquid Chromatography (HPLC). The class results are presented below: QUESTION: Calculate the measurement of uncertainty and provide the data in a spreadsheet table. Mass of Taurine (mg) Mass of Taurine (mg) (Table continued) 152.01 152.23 151.87 151.45 154.11 152.64 152.98 153.24 152.88 151.45 153.49 152.48 150.68 152.33 151.52 153.63 152.48 151.68 153.17 153.40 153.77 153.67 152.34 153.16 152.57 153.02 152.86 151.50 151.23 152.57 152.72 151.54 146.47 152.38 152.44 152.54 152.53 152.54 151.32 152.87 151.24 153.26 152.02 152.90 152.87 151.49 152.46 152.58arrow_forward1. Predict the organic product(s) of the following reactions. Assume excess of reagents unless otherwise noted. a) &l BH3 •THF b) 1) NaOH 2) H3O+ solve d) ala 1) EtMgBr 2) H3O+ e) H2N سكر CuLi NH2 1) SOCI2 2) EtMgBr 3) H3O+ NC H3O+ Δarrow_forwardThere are 48 pairs of students in the following table. Each pair has quantitatively determined the mass of taurine in a 250 mL can of the popular energy drink marketed as “Munster” using High Performance Liquid Chromatography (HPLC). The class results are presented below: QUESTION: Summarise and report these results including an indication of measurement uncertainty. In both calculation samples calculate if an outlier is present, max value, number of samples, mean, standard deviation, g (suspect), g (critical) and t (critical). Mass of Taurine (mg) Mass of Taurine (mg) (Table continued) 152.01 152.23 151.87 151.45 154.11 152.64 152.98 153.24 152.88 151.45 153.49 152.48 150.68 152.33 151.52 153.63 152.48 151.68 153.17 153.40 153.77 153.67 152.34 153.16 152.57 153.02 152.86 151.50 151.23 152.57 152.72 151.54 146.47 152.38 152.44 152.54 152.53 152.54 151.32…arrow_forward
- Indicate the rate expressions for reactions that have order 0, 1, and 2.arrow_forwardPROBLEMS Q1) Label the following salts as either acidic, basic, or neutral a) Fe(NOx) c) AlBr b) NH.CH COO d) HCOON (1/2 mark each) e) Fes f) NaBr Q2) What is the pH of a 0.0750 M solution of sulphuric acid?arrow_forward8. Draw all the resonance forms for each of the fling molecules or ions, and indicate the major contributor in each case, or if they are equivalent (45) (2) -PH2 سمة مدarrow_forward
- A J то گای ه +0 Also calculate the amount of starting materials chlorobenzaldehyde and p-chloroacetophenone required to prepare 400 mg of the given chalcone product 1, 3-bis(4-chlorophenyl)prop-2-en-1-one molar mass ok 1,3-bis(4-Chlorophenyl) prop-2-en-1-one = 277.1591m01 number of moles= 0.400/277.15 = 0.00144 moles 2 x 0.00 144=0.00288 moves arams of acetophenone = 0.00144 X 120.16 = 0.1739 0.1739x2=0.3469 grams of benzaldehyde = 0.00144X106.12=0.1539 0.1539x2 = 0.3069 Starting materials: 0.3469 Ox acetophenone, 0.3069 of benzaldehyde 3arrow_forward1. Answer the questions about the following reaction: (a) Draw in the arrows that can be used make this reaction occur and draw in the product of substitution in this reaction. Be sure to include any relevant stereochemistry in the product structure. + SK F Br + (b) In which solvent would this reaction proceed the fastest (Circle one) Methanol Acetone (c) Imagine that you are working for a chemical company and it was your job to perform a similar reaction to the one above, with the exception of the S atom in this reaction being replaced by an O atom. During the reaction, you observe the formation of three separate molecules instead of the single molecule obtained above. What is the likeliest other products that are formed? Draw them in the box provided.arrow_forward3. For the reactions below, draw the arrows corresponding to the transformations and draw in the boxes the reactants or products as indicated. Note: Part A should have arrows drawn going from the reactants to the middle structure and the arrows on the middle structure that would yield the final structure. For part B, you will need to draw in the reactant before being able to draw the arrows corresponding to product formation. A. B. Rearrangement ΘΗarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning

Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning

Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
The Bohr Model of the atom and Atomic Emission Spectra: Atomic Structure tutorial | Crash Chemistry; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=apuWi_Fbtys;License: Standard YouTube License, CC-BY