Reduce the following reducible representations using the great orthogonality theorem.
(a) In the
(b) In the
(c) In the
(d) In the
(a)
Interpretation:
The given reducible representations are to be reduced by using the great orthogonality theorem.
Concept introduction:
The characters of the irreducible representations of the given point group can be multiplied by each other. The only condition is that the characters of the same symmetry operations are multiplied together. The multiplication of the characters is commutative.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•
Answer to Problem 13.59E
The linear combination for given irreducible representation of
Explanation of Solution
The given reducible representation of
This reducible representation is reduced using great orthogonality theorem as shown below.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•
The order of the group is
The great orthogonality theorem of the irreducible representation of
Substitute the value of order of the group, character of the class of the irreducible representation from character table of
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Thus, the linear combination is
The linear combination for given irreducible representation of
(b)
Interpretation:
The given reducible representations are to be reduced by using the great orthogonality theorem.
Concept introduction:
The characters of the irreducible representations of the given point group can be multiplied by each other. The only condition is that the characters of the same symmetry operations are multiplied together. The multiplication of the characters is commutative.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•
Answer to Problem 13.59E
The linear combination for given irreducible representation of
Explanation of Solution
The given reducible representation of
This reducible representation is reduced using great orthogonality theorem as shown below.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•
The order of the group is
The great orthogonality theorem of the irreducible representation of
and
Substitute the value of order of the group, character of the class of the irreducible representation from character table of
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Thus, the linear combination is
The linear combination for given irreducible representation of
(c)
Interpretation:
The given reducible representations are to be reduced by using the great orthogonality theorem.
Concept introduction:
The characters of the irreducible representations of the given point group can be multiplied by each other. The only condition is that the characters of the same symmetry operations are multiplied together. The multiplication of the characters is commutative.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•
Answer to Problem 13.59E
The linear combination for given irreducible representation of
Explanation of Solution
The given reducible representation of
This reducible representation is reduced using great orthogonality theorem as shown below.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•
The order of the group is
The great orthogonality theorem of the irreducible representation of
Substitute the value of order of the group, character of the class of the irreducible representation from character table of
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Substitute the value of order of the group, character of the class of the irreducible representation from character table of
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Thus, the linear combination is
The linear combination for given irreducible representation of
(d)
Interpretation:
The given reducible representations are to be reduced by using the great orthogonality theorem.
Concept introduction:
The characters of the irreducible representations of the given point group can be multiplied by each other. The only condition is that the characters of the same symmetry operations are multiplied together. The multiplication of the characters is commutative.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•
Answer to Problem 13.59E
The linear combination for given irreducible representation of
Explanation of Solution
The given reducible representation of
This reducible representation reduced using great orthogonality theorem as shown below.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•
The order of the group is
The great orthogonality theorem of the irreducible representation of
Substitute the value of order of the group, character of the class of the irreducible representation from character table of
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Substitute the value of order of the group, character of the class of the irreducible representation from character table of
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Thus, the linear combination is
The linear combination for given irreducible representation of
Want to see more full solutions like this?
Chapter 13 Solutions
Physical Chemistry
- Nonearrow_forwardComment on the following paragraph. In halides, MXn stoichiometry does not require a value of n so large as to prevent the approach of M+ ions, for steric or electrostatic reasons.arrow_forwardExplain Wade's rules, Indicate what the letters S and n represent in the formula.arrow_forward
- Which of the terms explain the relationship between the two compounds? CH2OH Он Он Он Он α-D-galactose anomers enantiomers diastereomers epimers CH2OH ОН O он Он ОН B-D-galactosearrow_forwardHi, I need help on my practice final, If you could offer strategies and dumb it down for me with an explanation on how to solve that would be amazing and beneficial.arrow_forwardHi I need help with my practice final, it would be really helpful to offer strategies on how to solve it, dumb it down, and a detailed explanation on how to approach future similar problems like this. The devil is in the details and this would be extremely helpfularrow_forward
- In alpha-NbI4, Nb4+ should have the d1 configuration (bond with paired electrons: paramagnetic). Please comment.arrow_forwardHi, I need help on my practice final, if you could explain how to solve it offer strategies and dumb it down that would be amazing. Detail helpsarrow_forwardBriefly explain the following paragraph: both the distortion of symmetry and the fact that the solid is diamagnetic indicate the existence of a Nb-Nb bond.arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,