![Thinking Like an Engineer: An Active Learning Approach (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134639673/9780134639673_largeCoverImage.gif)
When a fluid flows around an object, it creates a force, called the drag force, that pulls on the object. The coefficient of drag (Cd) is a dimensionless number that describes the relationship between the force created and the fluid and object properties, given as
Where FD is drag force, ρ is the fluid density, and υ is the velocity of the object relative to the fluid. The area of the object the force acts upon is AP, and for spheres is given by the area of a circle. The Reynolds number in this situation is written as
where DP is the diameter of the object the force acts upon. The following chart shows this relationship. The dashed lines show the predicted theories of Stokes and Newton compared to the solid line of actual results.
- a. If the Reynolds number is 500, what is the coefficient of drag?
- b. If the coefficient of drag is 2, what is the Reynolds number?
Ethylene glycol has a dynamic viscosity of 9.13 centipoise and a specific gravity of 1.109.
- c. If the fluid flows around a sphere of diameter 1 centimeter travelling at a velocity of 2.15 centimeters per second, determine the drag force on the particle in units of newtons. (Hint: First determine the Reynolds number.)
- d. If a coefficient of drag of 10 is produced, what is the diameter of the particle? Assume the fluid moving at 1 centimeter per second (Hint: First determine the Reynolds number.)
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 13 Solutions
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Additional Engineering Textbook Solutions
Starting Out with C++: Early Objects (9th Edition)
Starting Out with Python (4th Edition)
Modern Database Management
Degarmo's Materials And Processes In Manufacturing
Web Development and Design Foundations with HTML5 (8th Edition)
HEAT+MASS TRANSFER:FUND.+APPL.
- Show all work pleasearrow_forwardDraw top, side, front view With pen(cil) and paper Multi view drawing and handwriting all of itarrow_forwardA wheel of diameter 150.0 mm and width 37.00 mm carrying a load 2.200 kN rolls on a flat rail. Take the wheel material as steel and the rail material as cast iron. Assume the figure given, which is based on a Poisson's ratio of 0.3, is applicable to estimate the depth at which the maximum shear stress occurs for these materials. At this critical depth, calculate the Hertzian stresses σr, σy, σz, and Tmax for the wheel. 1.0 0.8 0, т Ratio of stress to Pmax 0.4 0.6 90 69 0.2 0.5b b 1.5b Tmax 2b Distance from contact surface The Hertizian stresses are as follows: 02 = or = -23.8 psi for the wheel =| necessary.) σy for the wheel =| MPa σz for the wheel = MPa V4 for the wheel = | MPa 2.5b ཡི 3b MPa (Include a minus sign ifarrow_forward
- 4. Solve for the support reactions at A and B. W1 600 lb/ft W2 150 lb/ft A Barrow_forwardIn cold isostatic pressing, the mold is most typically made of which one of the following: thermosetting polymer tool steel sheet metal textile rubberarrow_forwardThe coefficient of friction between the part and the tool in cold working tends to be: lower higher no different relative to its value in hot workingarrow_forward
- The force F={25i−45j+15k}F={25i−45j+15k} lblb acts at the end A of the pipe assembly shown in (Figure 1). Determine the magnitude of the component F1 which acts along the member AB. Determine the magnitude of the component F2 which acts perpendicular to the AB.arrow_forwardHi can you please help me with the attached question?arrow_forwardHi can you please help me with the attached question?arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305387102/9781305387102_smallCoverImage.gif)