
Concept explainers
Interpretation:
The relation between molality and molarity is to be derived, and the fact that, for dilute aqueous solutions, molality is equal to molarity is to be proved.
Concept introduction:
Molality is defined as the ratio of the number of moles of the solute to the mass of the solvent (in kilograms). It is expressed as follows:
Here,
Molarity is defined as the ratio of the number of moles of the solute to the volume of the solution (in liters). It is expressed as follows:
Here,
Density is defined as the ratio of mass to volume. It is expressed as follows:
Here,

Answer to Problem 120AP
Solution:
(a)
The relation between molality and molarity has been derived.
(b)
For dilute solutions, molality and molarity are equal.
Explanation of Solution
a)Drive the equation relating the molality and molarity of a solution
The mass of the solvent (in kilograms) is calculated as follows:
Or
Consider
Density is calculated as follows:
Rearrange the above equation for the calculation of mass as follows:
Calculate the mass of the solution from the molarity and its molar mass, as follows:
Number of moles is calculatedas follows:
By substituting equation (3) in equation (2), we will get:
Rearrange the above equation for the calculation of mass as follows:
Substituting these expressions into equation (1),
Or
Molality is defined as the number of moles of the solute divided by the mass of the solvent (in kilograms).
It is expressed as follows:
Rearrange the above equation for the calculation of mass as follows:
Consider
Substituting the above equation back into equation (4) gives the following equation:
Taking the inverse of both sides of the equation gives the following equation:
or
Hence, the above equation is the relation between the molality of a solution to its molarity.
b) For any aqueous solution, molality is equal to molarity.
The density of water is approximately
In dilute solutions,
Consider a
The derived equation reduces to the equation given below:
When the density becomes equal to
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry
- What alkene or alkyne yields the following products after oxidative cleavage with ozone? Click the "draw structure" button to launch the drawing utility. and two equivalents of CH2=O draw structure ...arrow_forwardH-Br Energy 1) Draw the step-by-step mechanism by which 3-methylbut-1-ene is converted into 2-bromo-2-methylbutane. 2) Sketch a reaction coordinate diagram that shows how the internal energy (Y- axis) of the reacting species change from reactants to intermediate(s) to product. Brarrow_forward2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). C5H10 H-CI CH2Cl2 CIarrow_forward
- Draw the products of the stronger acid protonating the other reactant. དའི་སྐད”“ H3C OH H3C CH CH3 KEq Product acid Product basearrow_forwardDraw the products of the stronger acid protonating the other reactant. H3C NH2 NH2 KEq H3C-CH₂ 1. Product acid Product basearrow_forwardWhat alkene or alkyne yields the following products after oxidative cleavage with ozone? Click the "draw structure" button to launch the drawing utility. draw structure ... andarrow_forward
- Draw the products of the stronger acid protonating the other reactant. H3C-C=C-4 NH2 KEq CH H3C `CH3 Product acid Product basearrow_forward2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). C5H10 Br H-Br CH2Cl2 + enant.arrow_forwardDraw the products of the stronger acid protonating the other reactant. KEq H₂C-O-H H3C OH Product acid Product basearrow_forward
- Draw the products of the stronger acid protonating the other reactant. OH KEq CH H3C H3C `CH3 Product acid Product basearrow_forward2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). Ph H-I CH2Cl2arrow_forward3 attempts left Check my work Draw the products formed in the following oxidative cleavage. [1] 03 [2] H₂O draw structure ... lower mass product draw structure ... higher mass productarrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





